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Abstract

The coupling of two-dimensional (2D) and one-
dimensional (1D) models to form a single hy-
brid 2D-1D model is considered, for the time-
dependent linear scalar wave equation. The 1D
model is an approximation of a part of the orig-
inal 2D model where the solution behaves ap-
proximately in a 1D way. This hybrid model,
if designed properly, is a more e�cient way to
solve the problem compared to the full 2D model.
The 2D-1D coupling is done using the Dirichlet-
to-Neumann (DtN) map associated with the 1D
part of the problem. We shall discuss two ways
in which the DtN coupling can be done: in one
of them the 2D and 1D problems exchange infor-
mation in each time step, whereas in the other
the two problems are solved independently. The
well-posedness of the hybrid problem as well as
the coupling error are discussed, and numerical
examples are presented.
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1 Introduction

A reoccurring theme in computational mechan-
ics in recent years is the need to reduce the size
of large discrete models. One type of such a re-
duction is spatial dimensional reduction, which
one may perform in cases where the solution in
some region of a high-dimensional (highD) com-
putational domain, say two-dimensional (2D),
behaves in a low-dimensional (lowD) way, say
one-dimensional (1D). There are several scenar-
ios where this could be the case. Most signi�-
cant is the scenario where the solution in a cer-
tain region behaves in a way that is weakly (or
hardly) dependent on a certain coordinate, rel-
ative to the other coordinates. Another pos-
sible scenario is when we are interested in the
solution within a geometrically slender region.
In this case we might be interested in the lat-
eral average of the solution within this region
rather than in its lateral distribution. Alter-
natively we might already know the nature of

the lateral distribution of the solution within
this region and wish to know the axial distri-
bution. In these cases, the lateral dimension is
the dimension we would eliminate, resulting in a
mixed-dimensional model. Fig. 1 describes the
typical characteristics of the highD and lowD
sub-models.

The motivation in constructing a mixed-dimensional
model comes from the fact that solving the prob-
lem in its highD form everywhere may require
a very large computational e�ort. The idea is
thus to partly reduce the spatial dimension of
the problem in order to obtain a hybrid model
which is much more e�cient. Fields of appli-
cation where mixed-dimensional coupling is of
special interest include, among others, the fol-
lowing:

� Blood-�ow analysis. Typically the HighD
model corresponds to a speci�c blood ves-
sel of interest in the human body and the
LowD model corresponds to the rest of the
blood system. An example can be found
in [1].

� Hydrological and geophysical �ow models.

Here the LowD region represents a collec-
tion of channel-like entities (rivers, �ood
streams, etc.) and the HighD region is
that of a large water body (a river delta,
a lake, etc.).

� Elastic structures. Typically the LowD
model consists of the slender parts of the
structure that have rod- or beam- or plate-
or shell-like behavior, and which consti-
tute most of the structure volume, while
the HighD parts are the regions that have
to be modeled as 3D elastic bodies. Panasenko
et al. have developed an asymptotic-variational
approach for such structural problems, un-
der static conditions. See, e.g., [2].

Our focus in this work is the latter applica-
tion, although the coupling methods developed
are general and may be useful for other applica-
tions as well. In this talk, we apply 2D-1D cou-
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Motivation: Solving the problem in its highD form everywhere requires a 
very large computational effort. The hybrid model is much more efficient. 

Figure 1: The characteristics of the highD and lowD sub-models

pling to wave problems governed by the scalar
wave equation. The method of coupling chosen
here is one which makes use of the Dirichlet-
to-Neumann (DtN) map associated with the 1D
part of the problem.

2 The hybrid model

After splitting the given problem into a 2D part
and a 1D part, thus creating a hybrid 2D-1D
model, we need to consider the interface condi-
tions imposed at the continuous level (i.e., be-
fore any discretization takes place). There are
two interface conditions: on the wave function
u (the acoustic pressure) and on its ��ux� (the
normal derivative ∂u/∂n). We discuss the well-
posedness of the hybrid problem using these two
continuity conditions.

3 DtN mixed-dimensional coupling

As mentioned above, the 2D-1D coupling is done
using the Dirichlet-to-Neumann (DtN) map as-
sociated with the 1D part of the problem. The
DtN map relates the primary variable to the
��ux� on an interface. In the mixed-dimensional
context, the DtN method couples the highD and
lowD models by enforcing the continuity of the
DtN map across the highD-lowD interface. The
rationale is that rather than insisting that both
the primary variable and the �ux be continuous
across the interface, it makes sense to have the
mapping between them continuous. The DtN
method was used in [3] for the Helmholtz equa-
tion, for the case where the 2D behavior is per-
sistent in the 1D region. In the time-harmonic
case (the frequency domain), the DtN method
has been found to be especially e�ective [3, 4].

Here we use the DtN map coupling in the time
domain, which is a major extension.

We shall discuss two ways in which the DtN
coupling can be done: in one of them the 2D and
1D problems exchange information in each time
step [5], whereas in the other the two problems
are solved independently.

By experimenting with various numerical ex-
amples, we shall investigate the performance of
these methods and estimate the errors that each
of them generates.
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