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Abstract

This paper investigates the effect of anisotropic
turbulence on the generation of turbulence-aerofoil
interaction noise, also known as leading-edge noise,
for a rigid plate. Thin aerofoil theory is used to
model an aerofoil as a semi-infinite plate and the
scattering of incoming turbulence is solved via
application of the Wiener-Hopf technique. This
theoretical solution encapsulates the diffraction
problem for gust-aerofoil interaction, and is inte-
grated over a wavenumber-frequency spectrum
to account for general incoming turbulence. The
specific wavenumber-frequency spectrum in the
anisotropic case can be obtained using the method
of Gaussian decomposition, in which the gen-
eralized spectrum is approximated through the
weighted sum of individual Gaussian eddy mod-
els.
Keywords: Leading Edge Noise, Noise Control,
Aeroacoustics, Turbulence Modelling

1 Introduction

Leading-edge noise, also known as turbulence-
aerofoil interaction noise, is produced by the
scattering of surface pressure fluctuations that
are due to turbulent velocity fluctuations of a
given incoming flow by the leading edge of a
blade. It is known to be a dominant noise mech-
anism for many applications, such as in wind
turbines, helicopter rotors, and turbofan engines.
In this latter case, for engines with multi-row ro-
tor systems, we find that the wake from turbu-
lence interacting with rotor blades impinges on
the downstream blade and is a dominant source
of noise [1]. Regarding wind turbines, we find
that the interaction of the blades with atmo-
spheric turbulence causes unwanted noise par-
ticularly at low frequencies. Thus, there are in-
dustrial and social reasons to focus on reduc-
ing leading-edge noise, particularly to counter-
act harmful noise pollution.

2 Body of the paper

In this paper we calculate the power spectral
density denoted Ψ(ω) for the rigid leading edge
diffraction problem, given by

Ψ(ω) =
∫ π
−π

∫
R3 P (k, θ)Φ22(k)δ

(
k1 − ω

U∞

)
dkdθ,

which will be given in SPL as a measure of the
total observed far-field noise.

We discuss the two terms in the integrand
separately, since they require different mathe-
matical tools to model and solve them accu-
rately and efficiently. This inherent duality in
the problem provides scope in noise reduction
by targeting both the scattering via the plate
modelling, and by targeting how the spectrum
modelling distributes energy.

First, P (k, θ) is the far-field pressure pertur-
bation found by solving a convected Helmholtz
equation for the scattered velocity perturbation
ϕs and then applying Taylor’s frozen turbulence
hypothesis to relate this to the pressure via
p′ = −ρ0

Dϕ
Dt .

Having set up our governing equations, which
include a pressure jump upstream and Neumann
boundary conditions along the plate, we apply
the Wiener-Hopf technique and the method of
steepest descent to find the far-field scattered
pressure.

Φ22 is the energy density spectrum, describing
how the turbulent kinetic energy is distributed
over wavenumbers. We model this using the
method of Gaussian decomposition derived in
[3] and applied to leading edge noise in [4].
We extend this approach to the case of axisym-
metric turbulence via the model given in [2],
however, unlike [4], we take a more mathemat-
ical approach. We derive a model that sums
axisymmetric Gaussian filter kernels in order to
approximate a generalized von Kármán type model
(which differs by generalizing the inertial sub-
range scaling of the turbulence via the exponent
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p in the denominator) of the form

Φa
22(k) =

2kT (L
∗Λa)

5Λ4
rΓ(p)

(1 + 2u2r)π
3/2Γ

(
p− 5

2

)

× k21 + γk23
[1 + L∗2Λ2

a(k
2
1 + Λ2

r(k
2
2 + k23))]

p
.

Here we define the kinetic turbulence energy kT ,
L∗ is a lengthscale parameter that ensures

Λa =

∫ ∞

0
R11(x, 0, 0)dx.

where R11 is the 1, 1 velocity autocorrelation,
or in the context of our work the spatial Fourier
transform of the wavenumber spectrum Φ11(k).
The subscripts a and t refer to quantities in ei-
ther the axial or transverse direction with re-
spect to the oncoming mean flow, and r denotes
that it is a ratio of transverse to axial. Moreover,
we use the parameter γ = 2u2r−Λ2

r from [2]. The
ratios of root mean velocity and integral length-
scales in the transverse and axial direction sat-
isfy the important constraint 2u2r ≥ Λ2

r in [2],
which ensures that the power-spectral density
remains non-negative.

Then, by finding a suitable weighting function
f we get a good approximation to this axisym-
metric model. The primary benefit of this tur-
bulence model is that we can sum individual ker-
nels with different p values or different length-
scale ratios, which effectively allows us to adapt
our modelling to the behaviour of the turbulence
itself.

In figure 1, in which we have fitted our model
to experimental data for a rigid plate in slightly
anisotropic turbulence from our collaborators at
UNSW Sydney. Different ratios of anisotropy
were obtained by placing the leading edge at
different distances from the wake of a cylinder.
In figure two we further test the trends observed
from the experimental data using our model which
was verified as accurate over a wide range of
frequencies. We first test fully isotropic data,
and then reverse the anisotropy ratio to favour
the streamwise direction. Both cases show good
noise reduction.

When matching to data, we find that p = 11
3

(the constant found for the Rapid Distortion
Theory description of turbulence) gave excel-
lent agreement to high frequency cut-off, verify-

Figure 1: Comparison of model and experimen-
tal data, ratio of anisotropy varied

Figure 2: Model predictions for both an
isotropic spectrum and a spectrum favouring the
streamwise direction

ing that cylinder turbulence has different scal-
ings in the inertial subrange than standard grid
generated turbulence that is usually modelled
with either Liepmann (p = 3) or von Kármán
(p = 17

6 ) turbulence models. The benefit of
the Gaussian decomposition model is that the
turbulence can be studied without considering
scattering, and the behaviour can be modelled
beforehand thanks to its versatility.
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