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Abstract
In recent years, several space–time formulations
and discretizations for the wave equation have
been proposed. With “space–time” we mean
that they are posed in the space–time cylinder,
as opposed to semi-discretizations in space com-
bined with time stepping. To our knowledge, no
continuous and coercive (i.e. sign-definite) vari-
ational formulation has been proposed yet. The
aim of this paper is to fill this gap proposing
a Lax–Milgram formulation on the space–time
cylinder for the wave equation with impedance
boundary conditions. In order to do this, we fol-
low a strategy previously adopted for Helmholtz
problems, which relies on Morawetz identities
and multipliers. From this, a continuous and
coercive bilinear form and a linear form on an
appropriate space can be constructed. We also
show the explicit coercivity constant.
Keywords: wave equation, variational prob-
lem, coercive, sign-definite, space–time

1 Introduction and notation
We consider an initial–boundary value problem
(IBVP) for the wave equation with impedance
boundary conditions:





utt − c2∆u = f on Q = (0, T )× Ω,
∂u
∂n + 1

θcut = g on Σ = (0, T )× ∂Ω,

u = u0 on Ω0 = {0} × Ω,

ut = u1 on Ω0.

(1)

Here t denotes time differentiation, Ω ⊂ Rd is
an open, bounded, Lipschitz domain, c > 0 and
θ > 0 are constants, and f , g, u0 and u1 are
appropriate functions defined on Q, Σ and Ω0,
respectively. Let also ΩT = {T} × Ω.

Assume that exist L > 0 and δ > 0 such
that |x| ≤ L for all x ∈ Ω and x · n(x) ≥ δL
for all x ∈ ∂Ω, where n(x) is the normal to ∂Ω
at x. This implies that Ω is star-shaped with
respect to the ball BδL(0).

We define the seminorm

∥v∥2V :=∥vt∥2Q + c2∥∇v∥2Q + T 2∥utt − c2∆u∥2Q
+ L∥vt∥2Σ + c2L∥∇v∥2Σ
+ c2T∥∇v∥2Ω0

+ T∥vt∥2Ω0

+ c2T∥∇v∥2ΩT
+ T∥vt∥2ΩT

.

This is a norm on C∞
∗ (Q) := {u ∈ C∞(Q) :

∫
Ω0

u = 0} and on V := C∞∗ (Q)
∥·∥V . We assume

that the initial datum u0 has zero average in Ω0.
Problems with more general data can be treated
by simply adding a constant to the solution.

2 Abstract framework
We introduce an abstract setting that includes
coercive formulations for both the wave and the
Helmholtz equations, generalising the approach
in [2]. Consider a linear boundary value prob-
lem (BVP):

{
Lu = f on D ⊂ Rn,

Bu = g on ∂D,
(2)

where the operators L and B act on the (either
real or complex) Hilbert space H ⊂ L2(Q) with
norm ∥ · ∥H . We want to write the BVP (2) as
a variational problem

find u ∈ H: b(u, v) = F (v) ∀v ∈ H, (3)

whose sesquilinear form b is continuous and co-
ercive (sign-definite) in H, so that the prob-
lem is well-posed by Lax–Milgram theorem. To
achieve this, we need an operator M : H →
L2(D) (the “Morawetz multiplier”), and two ses-
quilinear forms X and G that are continuous on
H and such that the following decomposition
holds (the “integrated Morawetz identity”):
∫

D
(LuMv +MuLv) = X(u, v) +G(u, v). (4)

We require that G(u, v) = Gg(v) for Gg ∈ H∗

when Bu = g, so that G(·, ·) collects the terms
coming from the boundary conditions.
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For A > 0, we define

b(u, v) := −X(u, v) +

∫

D

[
MuLv +ALuLv

]
,

F (v) := Gg(v) +

∫

D

[
−fMv +AfLv

]
.

It is immediate to check that, with these defini-
tions, a solution of the BVP (2) solves (3).

The coercivity of b is equivalent to the exis-
tence of C > 0 such that
1

2

[
G(u, u)−X(u, u)

]
+A∥Lu∥2L2(D) ≥ C∥u∥2H

(5)
for all u ∈ H. Indeed, from (4) it holds that

ℜ
∫

D
LuMu =

1

2

[
X(u, u) +G(u, u)

]
,

therefore ℜb(u, u) is equal to
∫

D
A|Lu|2 + 1

2
[X(u, u) +G(u, u)]−X(u, u),

and ℜb(u, u) ≥ C∥u∥2H is (5).
By setting Lu = ∆u+k2u, Bu = ∂u

∂n − ikθu,
Mu = x·∇u+αu−ikβu for suitable parameters
α, β ∈ R, one recovers the coercive formulation
for Helmholtz impedance BVPs described in [2].

3 A space–time formulation for the wave
equation

Existing space–time formulations for second-or-
der hyperbolic IBVPs, e.g. [3], do not satisfy
Lax–Milgram assumptions. We formulate the
IBVP (1) in the abstract framework described
above. We let H = V , D = Q, Lu := utt −
c2∆u, B be the operator collecting impedance
conditions on Σ and initial conditions on Ω0,
and choose the Morawetz multiplier as

(Mu)(t,x) := −ξx · ∇u+ β(t− T ∗)ut,

for all (t,x) ∈ Q, where β, ξ > 0 and T ∗ = νT ,
with ν > 1 are fixed parameters.

We define X and G in (4) as

X(u, v) :=

∫

ΩT

β(T − T ∗)(utvt + c2∇u · ∇v)

−
∫

ΩT

ξx · (ut∇v +∇uvt)

−
∫

Q

(
utvt(β + ξd) + c2∇u · ∇v(β + 2ξ − ξd)

)

−
∫

Σ

c2
[
Mu

∂v

∂n
− 1

θc
utMv

]

−
∫

Σ

ξx · n
[
c2∇u · ∇v − utvt

]
,

G(u, v) :=

∫

Ω0

βT ∗(utvt + c2∇u · ∇v)

+

∫

Ω0

ξx · (ut∇v +∇uvt)−
∫

Σ

c2
[
1

θc
ut +

∂u

∂n

]
Mv.

Then one can compute Gg(·) (by substituting
u0, u1 and g in G(·, ·)), b(·, ·) and F (·) as de-
fined above. Their continuity with respect to
the seminorm ∥ · ∥V follows from repeated use
of the Cauchy–Schwarz inequality, though it is
not explicity computed here.

4 Coercivity result
As observed in Section 2, to prove coercivity it
is sufficient to prove (5). Indeed this is true,
and the coercivity constant is reported explic-
itly. Only simple vector-calculus identities are
used in the proof. Recall that 0 < δ < 1 mea-
sures the “star-shapedness” of Ω.
Lemma. If

β ≥





ξ(d− 1)

ξ 1
ν−1

(
L
cT + 1

)

ξ 1
ν−1

L
cT

(
δθ + 1

δθ

)

and ξ > 0 and for any ν > 1, then:

b(v, v) ≥ min
{ξδ

4
,
A

T 2

}
∥v∥2V ∀v ∈ V.

Therefore the corresponding problem (3) is
well-posed and any conforming Galerkin discre-
tization is well-posed and quasi-optimal.

Standard H1(Q)-conforming discretizations
such as piecewise-(bi)linear finite elements are
not acceptable for this formulation. Indeed they
are not conforming in V , because of the ∥utt −
c2∆u∥Q term in the norm, while C1(Q)-confor-
ming schemes can be used.

The complete proof of the lemma and more
details will be available in [1].
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