A space-time continuous and coercive variational formulation for the wave equation

Paolo Bignardi^{1,*}, Andrea Moiola¹

¹Department of Mathematics, University of Pavia *Email: paolo.bignardi01@universitadipavia.it

Abstract

In recent years, several space-time formulations and discretizations for the wave equation have been proposed. With "space-time" we mean that they are posed in the space-time cylinder, as opposed to semi-discretizations in space combined with time stepping. To our knowledge, no continuous and coercive (i.e. sign-definite) variational formulation has been proposed vet. The aim of this paper is to fill this gap proposing a Lax–Milgram formulation on the space–time cylinder for the wave equation with impedance boundary conditions. In order to do this, we follow a strategy previously adopted for Helmholtz problems, which relies on Morawetz identities and multipliers. From this, a continuous and coercive bilinear form and a linear form on an appropriate space can be constructed. We also show the explicit coercivity constant.

Keywords: wave equation, variational problem, coercive, sign-definite, space-time

1 Introduction and notation

We consider an initial–boundary value problem (IBVP) for the wave equation with impedance boundary conditions:

$$\begin{cases} u_{tt} - c^2 \Delta u = f & \text{on } Q = (0, T) \times \Omega, \\ \frac{\partial u}{\partial n} + \frac{1}{\theta c} u_t = g & \text{on } \Sigma = (0, T) \times \partial \Omega, \\ u = u_0 & \text{on } \Omega_0 = \{0\} \times \Omega, \\ u_t = u_1 & \text{on } \Omega_0. \end{cases}$$
(1)

Here t denotes time differentiation, $\Omega \subset \mathbb{R}^d$ is an open, bounded, Lipschitz domain, c > 0 and $\theta > 0$ are constants, and f, g, u_0 and u_1 are appropriate functions defined on Q, Σ and Ω_0 , respectively. Let also $\Omega_T = \{T\} \times \Omega$.

Assume that exist L > 0 and $\delta > 0$ such that $|\mathbf{x}| \leq L$ for all $\mathbf{x} \in \Omega$ and $\mathbf{x} \cdot \mathbf{n}(\mathbf{x}) \geq \delta L$ for all $\mathbf{x} \in \partial \Omega$, where $\mathbf{n}(\mathbf{x})$ is the normal to $\partial \Omega$ at \mathbf{x} . This implies that Ω is star-shaped with respect to the ball $B_{\delta L}(\mathbf{0})$.

We define the seminorm

$$\begin{aligned} \|v\|_{V}^{2} &:= \|v_{t}\|_{Q}^{2} + c^{2} \|\nabla v\|_{Q}^{2} + T^{2} \|u_{tt} - c^{2}\Delta u\|_{Q}^{2} \\ &+ L \|v_{t}\|_{\Sigma}^{2} + c^{2}L \|\nabla v\|_{\Sigma}^{2} \\ &+ c^{2}T \|\nabla v\|_{\Omega_{0}}^{2} + T \|v_{t}\|_{\Omega_{0}}^{2} \\ &+ c^{2}T \|\nabla v\|_{\Omega_{T}}^{2} + T \|v_{t}\|_{\Omega_{T}}^{2}. \end{aligned}$$

This is a norm on $C^{\infty}_{*}(\overline{Q}) := \{u \in C^{\infty}(\overline{Q}) : \int_{\Omega_{0}} u = 0\}$ and on $V := \overline{C^{\infty}_{*}(\overline{Q})}^{\|\cdot\|_{V}}$. We assume that the initial datum u_{0} has zero average in Ω_{0} . Problems with more general data can be treated by simply adding a constant to the solution.

2 Abstract framework

We introduce an abstract setting that includes coercive formulations for both the wave and the Helmholtz equations, generalising the approach in [2]. Consider a linear boundary value problem (BVP):

$$\begin{cases} \mathcal{L}u = f & \text{ on } D \subset \mathbb{R}^n, \\ \mathcal{B}u = g & \text{ on } \partial D, \end{cases}$$
(2)

where the operators \mathcal{L} and \mathcal{B} act on the (either real or complex) Hilbert space $H \subset L^2(Q)$ with norm $\|\cdot\|_H$. We want to write the BVP (2) as a variational problem

find
$$u \in H$$
: $b(u, v) = F(v)$ $\forall v \in H$, (3)

whose sesquilinear form b is continuous and coercive (sign-definite) in H, so that the problem is well-posed by Lax–Milgram theorem. To achieve this, we need an operator $\mathcal{M} : H \rightarrow L^2(D)$ (the "Morawetz multiplier"), and two sesquilinear forms X and G that are continuous on H and such that the following decomposition holds (the "integrated Morawetz identity"):

$$\int_{D} (\mathcal{L}u\overline{\mathcal{M}v} + \mathcal{M}u\overline{\mathcal{L}v}) = X(u,v) + G(u,v).$$
(4)

We require that $G(u, v) = G_g(v)$ for $G_g \in H^*$ when $\mathcal{B}u = g$, so that $G(\cdot, \cdot)$ collects the terms coming from the boundary conditions. For A > 0, we define

$$b(u,v) := -X(u,v) + \int_D \left[\mathcal{M} u \overline{\mathcal{L}} v + A \mathcal{L} u \overline{\mathcal{L}} v \right],$$

$$F(v) := G_g(v) + \int_D \left[-f \overline{\mathcal{M}} v + A f \overline{\mathcal{L}} v \right].$$

It is immediate to check that, with these definitions, a solution of the BVP (2) solves (3).

The coercivity of b is equivalent to the existence of C > 0 such that

$$\frac{1}{2} \left[G(u,u) - X(u,u) \right] + A \|\mathcal{L}u\|_{L^2(D)}^2 \ge C \|u\|_H^2$$
(5)

for all $u \in H$. Indeed, from (4) it holds that

$$\Re \int_D \mathcal{L}u\overline{\mathcal{M}u} = \frac{1}{2} \big[X(u,u) + G(u,u) \big],$$

therefore $\Re b(u, u)$ is equal to

$$\int_D A|\mathcal{L}u|^2 + \frac{1}{2} \left[X(u,u) + G(u,u) \right] - X(u,u),$$

and $\Re b(u, u) \ge C ||u||_H^2$ is (5).

By setting $\mathcal{L}u = \Delta u + k^2 u$, $\mathcal{B}u = \frac{\partial u}{\partial n} - ik\theta u$, $\mathcal{M}u = \mathbf{x} \cdot \nabla u + \alpha u - ik\beta u$ for suitable parameters $\alpha, \beta \in \mathbb{R}$, one recovers the coercive formulation for Helmholtz impedance BVPs described in [2].

3 A space-time formulation for the wave equation

Existing space-time formulations for second-order hyperbolic IBVPs, e.g. [3], do not satisfy Lax-Milgram assumptions. We formulate the IBVP (1) in the abstract framework described above. We let H = V, D = Q, $\mathcal{L}u := u_{tt} - c^2 \Delta u$, \mathcal{B} be the operator collecting impedance conditions on Σ and initial conditions on Ω_0 , and choose the Morawetz multiplier as

$$(\mathcal{M}u)(t,\mathbf{x}) := -\xi \mathbf{x} \cdot \nabla u + \beta (t - T^*)u_t,$$

for all $(t, \mathbf{x}) \in Q$, where $\beta, \xi > 0$ and $T^* = \nu T$, with $\nu > 1$ are fixed parameters.

We define X and G in (4) as

$$\begin{split} X(u,v) &:= \int_{\Omega_T} \beta(T - T^*)(u_t v_t + c^2 \nabla u \cdot \nabla v) \\ &- \int_{\Omega_T} \xi \mathbf{x} \cdot (u_t \nabla v + \nabla u v_t) \\ &- \int_Q \left(u_t v_t (\beta + \xi d) + c^2 \nabla u \cdot \nabla v (\beta + 2\xi - \xi d) \right) \\ &- \int_\Sigma c^2 \left[\mathcal{M} u \frac{\partial v}{\partial n} - \frac{1}{\theta c} u_t \mathcal{M} v \right] \\ &- \int_\Sigma \xi \mathbf{x} \cdot \mathbf{n} \left[c^2 \nabla u \cdot \nabla v - u_t v_t \right], \end{split}$$

$$G(u,v) := \int_{\Omega_0} \beta T^*(u_t v_t + c^2 \nabla u \cdot \nabla v) + \int_{\Omega_0} \xi \mathbf{x} \cdot (u_t \nabla v + \nabla u v_t) - \int_{\Sigma} c^2 \left[\frac{1}{\theta c} u_t + \frac{\partial u}{\partial n} \right] \mathcal{M} v.$$

Then one can compute $G_g(\cdot)$ (by substituting u_0, u_1 and g in $G(\cdot, \cdot)$), $b(\cdot, \cdot)$ and $F(\cdot)$ as defined above. Their continuity with respect to the seminorm $\|\cdot\|_V$ follows from repeated use of the Cauchy–Schwarz inequality, though it is not explicitly computed here.

4 Coercivity result

As observed in Section 2, to prove coercivity it is sufficient to prove (5). Indeed this is true, and the coercivity constant is reported explicitly. Only simple vector-calculus identities are used in the proof. Recall that $0 < \delta < 1$ measures the "star-shapedness" of Ω .

Lemma. If

$$\beta \geq \begin{cases} \xi(d-1) \\ \xi \frac{1}{\nu-1} \left(\frac{L}{cT} + 1\right) \\ \xi \frac{1}{\nu-1} \frac{L}{cT} \left(\delta\theta + \frac{1}{\delta\theta}\right) \end{cases}$$

and $\xi > 0$ and for any $\nu > 1$, then:

$$b(v,v) \ge \min\left\{\frac{\xi\delta}{4}, \frac{A}{T^2}\right\} \|v\|_V^2 \qquad \forall v \in V.$$

Therefore the corresponding problem (3) is well-posed and any conforming Galerkin discretization is well-posed and quasi-optimal.

Standard $H^1(Q)$ -conforming discretizations such as piecewise-(bi)linear finite elements are not acceptable for this formulation. Indeed they are not conforming in V, because of the $||u_{tt} - c^2 \Delta u||_Q$ term in the norm, while $C^1(\overline{Q})$ -conforming schemes can be used.

The complete proof of the lemma and more details will be available in [1].

References

- [1] P. Bignardi, A. Moiola, A sign-definite space-time variational formulation for the wave equation, in preparation, 2022.
- [2] A. Moiola, E.A. Spence, Is the Helmholtz equation really sign-indefinite?, SIAM Review, 56(2) (2014), pp. 274–312.
- [3] O. Steinbach, M. Zank, A generalized infsup stable variational formulation for the wave equation, J. Math. Anal. Appl. 505 (2022), 125457.