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Abstract

In recent years, several space-time formulations
and discretizations for the wave equation have
been proposed. With “space-time” we mean
that they are posed in the space—time cylinder,
as opposed to semi-discretizations in space com-
bined with time stepping. To our knowledge, no
continuous and coercive (i.e. sign-definite) vari-
ational formulation has been proposed yet. The
aim of this paper is to fill this gap proposing
a Lax—Milgram formulation on the space—time
cylinder for the wave equation with impedance
boundary conditions. In order to do this, we fol-
low a strategy previously adopted for Helmholtz
problems, which relies on Morawetz identities
and multipliers. From this, a continuous and
coercive bilinear form and a linear form on an
appropriate space can be constructed. We also
show the explicit coercivity constant.
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1 Introduction and notation

We consider an initial-boundary value problem
(IBVP) for the wave equation with impedance
boundary conditions:

uy — Au=f onQ=(0,T) x Q,
g%—i—&ut:g on ¥ = (0,T) x 09,
u = ug on = {0} x Q,

Up = U on .

(1)

Here ; denotes time differentiation, QO c R? is
an open, bounded, Lipschitz domain, ¢ > 0 and
0 > 0 are constants, and f, g, ug and u; are
appropriate functions defined on @, X and €,
respectively. Let also Qp = {T'} x Q.

Assume that exist L > 0 and § > 0 such
that |x| < L for all x € Q and x - n(x) > JL
for all x € 012, where n(x) is the normal to 952
at x. This implies that  is star-shaped with
respect to the ball Bsr(0).

We define the seminorm

ol =llvellg + IVl + T uee — ¢*Aullg
+ Ll + L] Voll3
+ T Vllg, + Tllveld,
+ T Volly, + Tlvel, -

This is a norm on C(Q) := {u € C*®(Q) :
Jo, v =0}andon V := C(Q) H‘V. We assume
that the initial datum wug has zero average in €.
Problems with more general data can be treated

by simply adding a constant to the solution.

2 Abstract framework

We introduce an abstract setting that includes
coercive formulations for both the wave and the
Helmholtz equations, generalising the approach
in [2]. Consider a linear boundary value prob-
lem (BVP):

Lu=f on D C R", @)
Bu=g on dD,

where the operators £ and B act on the (either
real or complex) Hilbert space H C L?(Q) with
norm || - ||g. We want to write the BVP (2) as
a variational problem

find u € H: b(u,v) = F(v) Yve H, (3)
whose sesquilinear form b is continuous and co-
ercive (sign-definite) in H, so that the prob-
lem is well-posed by Lax—Milgram theorem. To
achieve this, we need an operator M : H —
L?(D) (the “Morawetz multiplier”), and two ses-
quilinear forms X and G that are continuous on
H and such that the following decomposition
holds (the “integrated Morawetz identity”):

/ (LuMv + MuLlw) = X (u,v) + G(u,v). (4)
D
We require that G(u,v) = G4(v) for G, € H*

when Bu = g, so that G(-,-) collects the terms
coming from the boundary conditions.
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For A >0, we define G(u,v) :== BT* (uvy + AVu - V)
Qo
b(u,v) := =X (u,v) + /D [Mulv + ALuLv], [ ex (Vo + Vuw) _/ 2 {lut n 8u] Mo,
2 » Oc on

Fv):= Gg(v)—i-/D [—fMuv+ AfLv] .

It is immediate to check that, with these defini-
tions, a solution of the BVP (2) solves (3).

The coercivity of b is equivalent to the exis-
tence of C' > 0 such that

1
=[G ) — X (u,w)] + Al Lul22 .y > Cllully

2
()
for all w € H. Indeed, from (4) it holds that

— 1
%/ LuMu = §[X(u, u) + G(u,u)],
D
therefore Rb(u, u) is equal to
/ AlLul* + % (X (u,u) + G(u,u)] — X (u,u),
D

and Rb(u, u) > Cllul|% is (5).

By setting Lu = Au+ k*u, Bu = % —ikOu,
Mu = x-Vu+au—ikBu for suitable parameters
a, B € R, one recovers the coercive formulation
for Helmholtz impedance BVPs described in [2].

3 A space—time formulation for the wave
equation

Existing space—time formulations for second-or-
der hyperbolic IBVPs, e.g. [3], do not satisfy
Lax—Milgram assumptions. We formulate the
IBVP (1) in the abstract framework described
above. Welet H =V, D = Q, Lu := uy —
c?Au, B be the operator collecting impedance
conditions on Y and initial conditions on €2,
and choose the Morawetz multiplier as

(Mu)(t,x) == —€&x - Vu+ B(t — Ty,

for all (t,x) € Q, where 3,£ > 0 and T = VT,
with v > 1 are fixed parameters.
We define X and G in (4) as

X(u,v) = B(T — T*)(ugvs + c2Vu - V)

Qr
- &x - (us Vo + Vuwy)
Qr
- / (wve(B + €d) + V- Vo(B 4 26 — &d))
Q
9 ov 1
— /Z c [Muan — cht/\/lv}

— / {x-n [02Vu-Vv —utvt] ,
p)

Then one can compute Gy(-) (by substituting
up,u1 and g in G(-,-)), b(-,-) and F(-) as de-
fined above. Their continuity with respect to
the seminorm || - ||y follows from repeated use
of the Cauchy—Schwarz inequality, though it is
not explicity computed here.

4 Coercivity result

As observed in Section 2, to prove coercivity it
is sufficient to prove (5). Indeed this is true,
and the coercivity constant is reported explic-
itly. Only simple vector-calculus identities are
used in the proof. Recall that 0 < § < 1 mea-
sures the “star-shapedness” of €.

Lemma. If

§(d—1)
B> (5 +1)
s (00 + 55)
and &€ > 0 and for any v > 1, then:

A

b(v,v) > min {%6, ﬁ}HUH%/

Therefore the corresponding problem (3) is
well-posed and any conforming Galerkin discre-
tization is well-posed and quasi-optimal.

Standard H'(Q)-conforming discretizations
such as piecewise-(bi)linear finite elements are
not acceptable for this formulation. Indeed they
are not conforming in V', because of the |juy —
c?Aul|g term in the norm, while C1(Q)-confor-
ming schemes can be used.

The complete proof of the lemma and more
details will be available in [1].

Yv eV.
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