A space-time continuous and coercive variational formulation for the wave equation

Paolo Bignardi ${ }^{1, *}$, Andrea Moiola ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Pavia
*Email: paolo.bignardi01@universitadipavia.it

Abstract

In recent years, several space-time formulations and discretizations for the wave equation have been proposed. With "space-time" we mean that they are posed in the space-time cylinder, as opposed to semi-discretizations in space combined with time stepping. To our knowledge, no continuous and coercive (i.e. sign-definite) variational formulation has been proposed yet. The aim of this paper is to fill this gap proposing a Lax-Milgram formulation on the space-time cylinder for the wave equation with impedance boundary conditions. In order to do this, we follow a strategy previously adopted for Helmholtz problems, which relies on Morawetz identities and multipliers. From this, a continuous and coercive bilinear form and a linear form on an appropriate space can be constructed. We also show the explicit coercivity constant.

Keywords: wave equation, variational problem, coercive, sign-definite, space-time

1 Introduction and notation

We consider an initial-boundary value problem (IBVP) for the wave equation with impedance boundary conditions:

$$
\begin{cases}u_{t t}-c^{2} \Delta u=f & \text { on } Q=(0, T) \times \Omega, \tag{1}\\ \frac{\partial u}{\partial n}+\frac{1}{\theta c} u_{t}=g & \text { on } \Sigma=(0, T) \times \partial \Omega, \\ u=u_{0} & \text { on } \Omega_{0}=\{0\} \times \Omega, \\ u_{t}=u_{1} & \text { on } \Omega_{0}\end{cases}
$$

Here ${ }_{t}$ denotes time differentiation, $\Omega \subset \mathbb{R}^{d}$ is an open, bounded, Lipschitz domain, $c>0$ and $\theta>0$ are constants, and f, g, u_{0} and u_{1} are appropriate functions defined on Q, Σ and Ω_{0}, respectively. Let also $\Omega_{T}=\{T\} \times \Omega$.

Assume that exist $L>0$ and $\delta>0$ such that $|\mathbf{x}| \leq L$ for all $\mathbf{x} \in \Omega$ and $\mathbf{x} \cdot \mathbf{n}(\mathbf{x}) \geq \delta L$ for all $\mathbf{x} \in \partial \Omega$, where $\mathbf{n}(\mathbf{x})$ is the normal to $\partial \Omega$ at \mathbf{x}. This implies that Ω is star-shaped with respect to the ball $B_{\delta L}(\mathbf{0})$.

We define the seminorm

$$
\begin{aligned}
\|v\|_{V}^{2}: & \left\|v_{t}\right\|_{Q}^{2}+c^{2}\|\nabla v\|_{Q}^{2}+T^{2}\left\|u_{t t}-c^{2} \Delta u\right\|_{Q}^{2} \\
& +L\left\|v_{t}\right\|_{\Sigma}^{2}+c^{2} L\|\nabla v\|_{\Sigma}^{2} \\
& +c^{2} T\|\nabla v\|_{\Omega_{0}}^{2}+T\left\|v_{t}\right\|_{\Omega_{0}}^{2} \\
& +c^{2} T\|\nabla v\|_{\Omega_{T}}^{2}+T\left\|v_{t}\right\|_{\Omega_{T}} .
\end{aligned}
$$

This is a norm on $C_{*}^{\infty}(\bar{Q}):=\left\{u \in C^{\infty}(\bar{Q}):\right.$ $\left.\int_{\Omega_{0}} u=0\right\}$ and on $V:=\overline{C_{*}^{\infty}(\bar{Q})}{ }^{\|\cdot\|_{V}}$. We assume that the initial datum u_{0} has zero average in Ω_{0}. Problems with more general data can be treated by simply adding a constant to the solution.

2 Abstract framework

We introduce an abstract setting that includes coercive formulations for both the wave and the Helmholtz equations, generalising the approach in [2]. Consider a linear boundary value problem (BVP):

$$
\begin{cases}\mathcal{L} u=f & \text { on } D \subset \mathbb{R}^{n}, \tag{2}\\ \mathcal{B} u=g & \text { on } \partial D,\end{cases}
$$

where the operators \mathcal{L} and \mathcal{B} act on the (either real or complex) Hilbert space $H \subset L^{2}(Q)$ with norm $\|\cdot\|_{H}$. We want to write the BVP (2) as a variational problem

$$
\begin{equation*}
\text { find } u \in H: b(u, v)=F(v) \quad \forall v \in H, \tag{3}
\end{equation*}
$$

whose sesquilinear form b is continuous and coercive (sign-definite) in H, so that the problem is well-posed by Lax-Milgram theorem. To achieve this, we need an operator $\mathcal{M}: H \rightarrow$ $L^{2}(D)$ (the "Morawetz multiplier"), and two sesquilinear forms X and G that are continuous on H and such that the following decomposition holds (the "integrated Morawetz identity"):

$$
\begin{equation*}
\int_{D}(\mathcal{L} u \overline{\mathcal{M} v}+\mathcal{M} u \overline{\mathcal{L} v})=X(u, v)+G(u, v) . \tag{4}
\end{equation*}
$$

We require that $G(u, v)=G_{g}(v)$ for $G_{g} \in H^{*}$ when $\mathcal{B} u=g$, so that $G(\cdot, \cdot)$ collects the terms coming from the boundary conditions.

For $A>0$, we define

$$
\begin{aligned}
b(u, v) & :=-X(u, v)+\int_{D}[\mathcal{M} u \overline{\mathcal{L} v}+A \mathcal{L} u \overline{\mathcal{L} v}] \\
F(v) & :=G_{g}(v)+\int_{D}[-f \overline{\mathcal{M} v}+A f \overline{\mathcal{L} v}]
\end{aligned}
$$

It is immediate to check that, with these definitions, a solution of the BVP (2) solves (3).

The coercivity of b is equivalent to the existence of $C>0$ such that

$$
\begin{equation*}
\frac{1}{2}[G(u, u)-X(u, u)]+A\|\mathcal{L} u\|_{L^{2}(D)}^{2} \geq C\|u\|_{H}^{2} \tag{5}
\end{equation*}
$$

for all $u \in H$. Indeed, from (4) it holds that

$$
\Re \int_{D} \mathcal{L} u \overline{\mathcal{M} u}=\frac{1}{2}[X(u, u)+G(u, u)]
$$

therefore $\Re b(u, u)$ is equal to

$$
\int_{D} A|\mathcal{L} u|^{2}+\frac{1}{2}[X(u, u)+G(u, u)]-X(u, u)
$$

and $\Re b(u, u) \geq C\|u\|_{H}^{2}$ is (5).
By setting $\mathcal{L} u=\Delta u+k^{2} u, \mathcal{B} u=\frac{\partial u}{\partial n}-i k \theta u$, $\mathcal{M} u=\mathbf{x} \cdot \nabla u+\alpha u-i k \beta u$ for suitable parameters $\alpha, \beta \in \mathbb{R}$, one recovers the coercive formulation for Helmholtz impedance BVPs described in [2].

3 A space-time formulation for the wave equation

Existing space-time formulations for second-order hyperbolic IBVPs, e.g. [3], do not satisfy Lax-Milgram assumptions. We formulate the IBVP (1) in the abstract framework described above. We let $H=V, D=Q, \mathcal{L} u:=u_{t t}-$ $c^{2} \Delta u, \mathcal{B}$ be the operator collecting impedance conditions on Σ and initial conditions on Ω_{0}, and choose the Morawetz multiplier as

$$
(\mathcal{M} u)(t, \mathbf{x}):=-\xi \mathbf{x} \cdot \nabla u+\beta\left(t-T^{*}\right) u_{t}
$$

for all $(t, \mathbf{x}) \in Q$, where $\beta, \xi>0$ and $T^{*}=\nu T$, with $\nu>1$ are fixed parameters.

We define X and G in (4) as

$$
\begin{aligned}
& X(u, v):=\int_{\Omega_{T}} \beta\left(T-T^{*}\right)\left(u_{t} v_{t}+c^{2} \nabla u \cdot \nabla v\right) \\
& -\int_{\Omega_{T}} \xi \mathbf{x} \cdot\left(u_{t} \nabla v+\nabla u v_{t}\right) \\
& -\int_{Q}\left(u_{t} v_{t}(\beta+\xi d)+c^{2} \nabla u \cdot \nabla v(\beta+2 \xi-\xi d)\right) \\
& -\int_{\Sigma} c^{2}\left[\mathcal{M} u \frac{\partial v}{\partial n}-\frac{1}{\theta c} u_{t} \mathcal{M} v\right] \\
& -\int_{\Sigma} \xi \mathbf{x} \cdot \mathbf{n}\left[c^{2} \nabla u \cdot \nabla v-u_{t} v_{t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& G(u, v):=\int_{\Omega_{0}} \beta T^{*}\left(u_{t} v_{t}+c^{2} \nabla u \cdot \nabla v\right) \\
& +\int_{\Omega_{0}} \xi \mathbf{x} \cdot\left(u_{t} \nabla v+\nabla u v_{t}\right)-\int_{\Sigma} c^{2}\left[\frac{1}{\theta c} u_{t}+\frac{\partial u}{\partial n}\right] \mathcal{M} v .
\end{aligned}
$$

Then one can compute $G_{g}(\cdot)$ (by substituting u_{0}, u_{1} and g in $\left.G(\cdot, \cdot)\right), b(\cdot, \cdot)$ and $F(\cdot)$ as defined above. Their continuity with respect to the seminorm $\|\cdot\|_{V}$ follows from repeated use of the Cauchy-Schwarz inequality, though it is not explicity computed here.

4 Coercivity result

As observed in Section 2, to prove coercivity it is sufficient to prove (5). Indeed this is true, and the coercivity constant is reported explicitly. Only simple vector-calculus identities are used in the proof. Recall that $0<\delta<1$ measures the "star-shapedness" of Ω.

Lemma. If

$$
\beta \geq\left\{\begin{array}{l}
\xi(d-1) \\
\xi \frac{1}{\nu-1}\left(\frac{L}{c T}+1\right) \\
\xi \frac{1}{\nu-1} \frac{L}{c T}\left(\delta \theta+\frac{1}{\delta \theta}\right)
\end{array}\right.
$$

and $\xi>0$ and for any $\nu>1$, then:

$$
b(v, v) \geq \min \left\{\frac{\xi \delta}{4}, \frac{A}{T^{2}}\right\}\|v\|_{V}^{2} \quad \forall v \in V
$$

Therefore the corresponding problem (3) is well-posed and any conforming Galerkin discretization is well-posed and quasi-optimal.

Standard $H^{1}(Q)$-conforming discretizations such as piecewise-(bi)linear finite elements are not acceptable for this formulation. Indeed they are not conforming in V, because of the $\| u_{t t}-$ $c^{2} \Delta u \|_{Q}$ term in the norm, while $C^{1}(\bar{Q})$-conforming schemes can be used.

The complete proof of the lemma and more details will be available in [1].

References

[1] P. Bignardi, A. Moiola, A sign-definite space-time variational formulation for the wave equation, in preparation, 2022.
[2] A. Moiola, E.A. Spence, Is the Helmholtz equation really sign-indefinite?, SIAM Review, 56(2) (2014), pp. 274-312.
[3] O. Steinbach, M. Zank, A generalized infsup stable variational formulation for the wave equation, J. Math. Anal. Appl. 505 (2022), 125457.

