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Abstract

We establish a dynamic homogenization frame-
work for describing linear elastic wave motion in
periodic origami structures by adopting a “bar-
and-hinge” modeling paradigm. In this setting,
we conduct a finite wavenumber — finite fre-
quency homogenization in the spectral neigh-
borhood of simple, repeated, and nearby eigen-
frequencies at an arbitrary wavenumber within
the first Brillouin zone. For completeness, the
source term representing the nodal forces is ex-
panded in Bloch waves and included in the anal-
ysis. We express the leading-order (system of)
effective equation(s) in a given spectral neigh-
borhood, and we approximate asymptotically
the corresponding Bloch dispersion relationship.
We illustrate the proposed framework by (i) com-
paring numerically the Bloch dispersion rela-
tionship to its asymptotic approximation for a
2D-periodic Miura-ori structure and (ii) com-
puting the effective motion near an isolated eigen-
frequency.
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1 Origami structures

Origami, the ancient Japanese art of paper fold-
ing, has become a source of technologic inspira-
tion and a keen subject of studies for its unique
scalability, programability, deployability and con
figurability properties. This class of structures
have rapidly found applications ranging from
nano to large scales in science and engineering
with examples including medical stents, energy
absorbing structures, vibration control instru-
ments, emergency shelters, inflatable structures,
and large spacecraft structures. Origami-like
engineered structures have also been found to
exhibit the so-called metaproperties that are not
observed in conventional structures and natural
materials, such as auxeticity, infinite shear stiff-
ness, negative bending stiffness, unidirectional
flexibility or strain reversal (in origami tubes).

The existing literature on the homogeniza-
tion of periodic origami-like structures can be
classified chiefly by (i) the dynamic regime of
study, and (ii) the mechanistic framework adopted
to model the origami panels. In the static regime,
Lebee and Sab [4] pursued a homogenization
analysis of periodic thick plates using the bending-
gradient plate theory. On the other hand, when
an origami structure is modeled using a bar-
and-hinge paradigm |[2], the existing literature
on trusses can be deployed to study its dynamic
properties. In this framework, Craster et al. [1]
extended the homogenization theory of discrete
periodic lattices to high frequency and small
wavelengths regimes. A generic finite wavelength-
finite frequency (FW-FF) homogenization frame-
work was proposed by Guzina et al. [3] to de-
scribe the effective wave motion in periodic me-
dia with rectangular Bravais lattices in the spec-
tral neighborhood of simple, repeated, and nearby
eigenfrequencies located at the origin or vertices
of the first Brillouin zone (BZ). More recently,
Oudghiri-Idrissi et al. [5] extended the FW-FF
homogenization framework to “perforated” peri-
odic continua supported on general Bravais lat-
tices by considering the spectral neighborhood
of an arbitrary wavenumber within the first BZ
and eigenfrequency clusters of arbitrary size.

By building upon the FW-FF homogeniza-
tion approach [3,5|, we aim to better under-
stand the wave motion in origami structures by
providing an origami-specific, dynamic homoge-
nization framework that leverages the bar-and-
hinge paradigm [2]. Such formulation specifi-
cally aims to: (i) capture the essential dynam-
ics of the problem, (ii) analytically illuminate
the origami behavior near spectral singularities
(e.g. Dirac points), (iii) reduce the computa-
tional cost, and (iv) aid the design of program-
able and tunable (periodic) origami structures.

2 Effective wave motion

We model periodic origami structures using a
“bar-and-hinge” paradigm where: (i) the folding
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of the structure and bending of the origami pan- N ]
els are modeled via elastic hinges, and (ii) the in- asf 7 e M 1
plane deformation of each panel is modeled with k ‘ > _‘

elastic bars [2]. Using the Bloch-wave expansion I\ ' \’< S ‘ ]
of the source term acting on the nodes of the S o - > =

discretized structure, the analysis is reduced,
thanks to the linearity of the system and period-
icity of the material properties, to that of a “unit
cell” of the origami structure. The homogenous
part of the unit cell system constitutes an eigen-
value problem that defines the “origamons”, i.e.
the Bloch waves that can propagate freely in the
discrete periodic origami structure (DPOS) at a
given eigenfrequency, and which form a local ba-
sis that describes the leading-order response of
the DPOS. By pursuing an asymptotic analysis
in the neighborhood of isolated, repeated, and
nearby eigenfrequencies at the wavenumber of
interest, we express the leading-order approxi-
mation of the total and effective motion in those
spectral neighborhoods. In this way, we formu-
late the (system of) effective equation(s) that in-
cludes the homogenized source term and forms
the basis from which the leading-order asymp-
totic approximation of the corresponding disper-
sion relationship is obtained. Fig. 1 illustrates a
discretized unit cell of the 2D-periodic Miura-ori
structure. Fig. 2 examines the performance of
the homogenization framework by plotting the
numerically-evaluated dispersion relationship to-
gether with its asymptotic approximation com-
puted at different wavenumber-eigenfrequency
pairs. Fig. 3 illustrates the effective wave mo-
tion in a 2D-periodic Miura-ori structure for an
excitation frequency (b) inside a band gap, and
(c) inside a pass band.
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Figure 1: (a) Truncated 2D periodic Miura-ori
sheet (b) unit cell of periodicity, (c) discretized
unit cell, and (d) first BZ of the lattice.
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Figure 2: Approximation of the first twelve
dispersion branches for the Miura-ori periodic
structure.
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Figure 3: (a) Amplitude of the driving force
and corresponding leading-order approximation
of the induced effective motion within: (b) band
gap, and (c) pass band near the origin of the first
BZ.

[2] E.T. Filipov, K. Liu, T. Tachi, M. Schenk
and G.H. Paulino (2017). Bar and hinge
models for scalable analysis of origami. Int.
J. Solids Struct., 124, 26-45.

[3] B. B. Guzina, S. Meng, O. Oudghiri-
Idrissi (2019). A rational framework for dy-
namic homogenization at finite wavelengths
and frequencies. Proc. Roy. Soc. A 475,
20180547.

[4] A. Lebee and K. Sab (2012). Homogeniza-
tion of thick periodic plates: Application
of the Bending-Gradient plate theory to a
folded core sandwich panel. Int. J. Solids
Struct., 49, 2778-2792.

[5] O. Oudghiri-Idrissi, B.B. Guzina and S.
Meng (2021). On the spectral asymptotics
of waves in periodic media with Dirichlet or

Neumann exclusions. Quart. J. Mech. Appl.
Math., 74, 173-221.



