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Abstract

In this paper, we deal with numerical solutions
of the Helmholtz equation using interpolation
techniques through oscillatory radial basis
functions (RBF). We build a radial basis
function-generated finite differences (RBF-FD)
scheme by means of Bessel functions as RBF.
By means of regularization with diagonal
increments we solve the ill-conditioned local
interpolation problem. Finally, we test the
solver with absorbing boundary conditions
(ABC) and find numerical evidence showing
that pollution effects are mitigated.

Keywords: RBF-FD, Helmholtz equation, shape

parameter, pollution effect, oscillatory RBF, wave
scattering.

1 Introduction

In this paper we calculate approximated
numerical solutions for Helmholtz problems
given by
—Au(x) — w?e(x)2u(x) = f(x), in O 1)
b(%u(x) + iwe(x) " tBu(x) = g(x), on 9N

where w is the angular frequency, c¢(x) > 0 is
the sound speed of a continuous media Q C R%,
f(x) is the source term, n the is unitary normal
vector field of the boundary 052, b takes values
zero or one, B is a certain linear operator!' and
g(x) is certain exact data on 9. Herei = /—1.

Inspired by Trefftz methods [1|, we use the
class of oscillatory RBF given by

Jg/o—1(kr)

(d), _ Zd/2-1 _
Sok; (T)_ (/{:’I”)d/z_l ’ d_1727“'7 (2)
where J, is the Bessel function of the first
kind. Since functions in (2) satisfy the
homogeneous Helmholtz equation

!The operator B, joint the value b = 0,1, is used to
define absorbing boundary conditions (ABC) of several
orders, even thought to define Dirichlet or Neumann
boundary conditions.

Au + k*u = 0, any interpolant of the form

ZO‘JS% 1% = x;])

will satisfy As + k23 = 0 as well. More details
about this class of oscillatory functions can be
consulted in [2].

2 Oscillatory RBF-FD for Helmholtz
problems

We assume that u is the solution of the problem
(1). With X = {x;}¥; € QUIQ a set of nodes,
we take stencils .S; {x }iL, € X based on

x;, with x! = x;. For x € ConvexHull(S;) we
define, with k; = w?c(x;)~2, the interpolant

GLx) =Y ale(lx - xi).  (3)
j=1

From (3), evaluating in the set of nodes we have
the local interpolation matrix? for x;

Ji = (9% (1% = x5 1<t i<

which is positive definite [2]. From (3) we have

the linear equation U; = J;«;, where
~ ; ~ ; ~ : T
U, = ( ul(xll) ui(xh) - uz(xﬁh) ) and
,L T

Usmg the 1nterpolant3 (3) in (1), we obtain
the system of linear equations

{PiTJilUZ— = f(x;), ifx; €Q
@zTJZIUi =g(x;), ifx; €909,
where

o= (Fel? (lx = Mo -+ Feol (e =3 Do, )
0: = (Gl 1% = 3t D, -+ Gepke (I = i, ), ) -
F=-A-w?c(x)"% and G = b= < L +iwe(x)7!B.

2Matrices J; are often ill-conditioned and is necessary
to use some regularization technical [3].

3Local interpolation is only used to calculate the
weights to approximate the linear operators at each
node, using the unknown values of the function u (similar
to the finite difference method), which are the final
representation calculated from the sparse system of
linear equations.

4Which can be assembled in a sparse matrix equation.
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k L= Nodes (N) ‘ [[u — |oo

27 h

10 60 3721 1.79e-04
20 120 14641 1.56e-04
40 240 58081 1.10e-04

80 480 231361 1.72e-04
120 720 519841 1.21e-04

Table 1: Results for approximated solutions of (3).
With a square uniform grid in Q N 9. For inner nodes
the stencil size is n = 13, at boundary nodes n, = 15,
and the number of nodes per wavelength is kept constant
with Ny = 6, i.e., h = 27 /6k.

3 Some examples and numerical results

In this section, we test the presented method

with a couple of examples.
Test 1 With Q = (—0.5,0.5) x (—0.5,0.5),
k = wc™!, constant wave speed ¢ = 1, and

u(z,y) =Vk(h(—20,20) + 2h(20, 20)
+ 0.5h(—20,20) — h(20, —20))

with h(zo,50) = HS (k|x — (z0,0)])), we solve

{—Au(x) — K*u(x) =0, inQ
a%u(x) +iku(x) = g(x), on 9.

Results in Table 1 show that with a fixed
number of nodes® per wavelength, the error
keeps the same order as k increases, which is
evidence that pollution effect is mitigated.

Test 2 We consider the acoustic scattering
problem with a hard obstacle Qs C 2 and
incident wave field given by wn.(x) = ek,
Figure 1. The total wave field is given by
U = Ujne + Uset- Lo compute the scattered wave
field we use the follow approximation by ABC
on the boundary 02

see

—Auger(x) — wQusct(x) =0, in Q/ﬁobs
Usct = —Uine, on aQobs
E%usct(x) + iwBuset (x) = 0, on 0N

with B =1+ sw 2.2,

Acknowledgments

This work is supported by

MINCIENCIAS-Colombia as a part of the
research project grant No. 80740-735-2020.

5We know empirically that it is desirable to keep the
symmetry of the stencils at the inner nodes and a larger
size at the boundary nodes to reduce the error. About
it, there is something related in [4].
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Figure 1: Top left: Distribution of nodes surrounding
a circular obstacle Q5. Top right: Incident wave field
Uine. Bottom left: Numerical solution of the scattered
wave field usct. Bottom right: Total wave field u =
Uine + Usct -
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