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Abstract

The equivalent fluid model (EFM) describes the
acoustic properties of rigid porous media by defin-
ing it as a fluid with an effective density and
an effective compressibility. Their definition are
based on the dynamic tortuosity o and the dy-
namic compressibility 8, known to be complex-
valued functions depending on frequency. Among
the different models describing v and 3, this pa-
per focuses on the Johnson-Champoux-Allard-
Pride-Lafarge (JCAPL) model [1] where these
parameters are defined as irrational functions,
behaving like fractional derivatives in the time
domain. Here, we present the proof of stabil-
ity of the time-domain EFM using the JCAPL
model thanks to their oscillatory-diffusive (OD)
representations.
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1 Introduction

The EFM equations for rigid porous materials
are recalled below in the Laplace domain:
{ poa(s) sa +Vp =0, (1)
X0B(s) sp+ Vi =0,
where pg is the ambient fluid density, xo the am-
bient adiabatic compressibility; velocity u and
pressure p are defined on (0,00) x Q, with 2 C
R™, f denotes the Laplace transform of f and s
is the complex variable.

The JCAPL model defines o and 3 as
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-1
M T+5-1

3)

with parameters detailed in [2]. These expres-
sions are based on the exact description of «
and 3 at the high and low frequency limits, con-
nected by a function whose singularities lie on
the negative real axis of the complex plane [3].

In order to study the stability of the whole
JCAPL - EFM system, a methodology based on

Bls) i=-(r-1)| 1+ — + N'>—

a poles and cuts technique [4] is used. It enables
to recast a complex function f in a formulation
built from an OD representation (4), containing
an infinite number of real or complex weights
and poles, but no /s-type terms.
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with the well-posedness condition fooo % d¢ < o0

for f to admit an OD representation [2].

2 Oscillatory-diffusive representation

The irrational parts of o and (3 are first studied
in order to find their OD representation. The
focus is therefore on the two following transfer
functions:
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Function g admits a diffusive representation
with 12(€) o €71 (€/L-1)2, a positive diffusive
weight defined for £ € (L, 00) and verifying the
well-posedness condition.

Function % has an oscillatory-diffusive rep-
resentation containing a diffusive part and an
additional isolated term, which is null for cer-
tain values of the parameters M’ N’ and L' [2].
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with s9 < 0, 7o > 0 and v(§) f(f/L’—l)l/2
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tive and verifies the well-posedness condition.

, which is posi-

3 Extended diffusive realization

~

Based on the OD representations of § and h,
system (1) in the time domain reads:

1
8tu+Mu—|—N(g*8tu)+p7Vp:0,

0 oo (6)
op+(vy—1) (h*atp)+XfV~u:0.
0



WAVES 2022, Palaiseau, France

The interest of the OD representation is in
the associated diffusive realization, which gives
a time-local formulation of the convolution prod-
ucts present in (6). In this work, extended dif-
fusive realizations, as

Zu(t, ) = /L ") Dub(E: %) de

Op(&t,x) = —EP(E5t,x) + u(t, x),
#(£;0,x) = u(0,x)/¢,

for z,, = (g * Oyu) with ¢ the diffusive variable,
are used and differ from wsual diffusive realiza-
tions by the presence of a time derivative in the
convolution product. Non-null initial conditions
are set for the diffusive variable to have a finite
value for z, at ¢ = 0 [5]. The energy functional

// €€ (€1, %) de dx,

the derivative of which is

/ u(t,x) - zy(t,x)dx —
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can be defined for the extended diffusive realiza-
tion (7). A realization analogous to (7) is used
for z, := (h * Oyp) with 1) denoting its associated
diffusive variable and FE, its associated energy.
The additional first-order system r¢/(s — sp) in
(5) is handled by the same diffusive variable 1)
and its associated energy, included in Ey, is

(7)

Pe(t) = o

By, (t) := ;/Qro (—s0) [ (=s0;t,%)|* dx,

Using the realization of the convolution prod-
ucts in (6) leads to the augmented system:

(atu—l—Mu—i—Nzu—l—

Vp=0,

0 Coo

(9tp+('y—1)zp+gv-u=0
(& t,x) = —€£o(&:t,x) + u(t,x), (9)

(&, x) = —EP(&t,x) + p(t,x),
#(£;0,x) = u(0,x)/¢,
¥(&0,x) = p(0,x)/€.

4 Stability analysis

The stability analysis of system (9) is performed
thanks to the augmented energy functional

E(t) == Em(t) + Eair(t),
where the classical mechanical energy is

1]e% X0
En(t) == p 2°°/QHuH2 dm+2/ﬂlp\2 dz,

and a diffusive energy is defined as
Egitt = poaeoc N Eg(t) + xo(y — 1) Ey(t) .

The positivity of the JCAPL diffusive weights,
and the known sign of ry and sp, enables to
prove the following proposition.

Theorem 4.1 In a bounded domain ) with no
contribution at the boundary (either p = 0, or
u-n =0 ondN), the augmented energy € of the
JCAPL-EFM satisties %£(t) < 0.

The key point of the proof lies in noticing that
certain terms in

d
CBa)= — an0< /HuH dx+N/u zudx>
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have an opposite sign of those in the time deriva-
tive of the diffusive energy (see the first term of

(8)) and can compensate exactly with d—tEdiff.

Moreover, following [6], Prop. 4.1 can be proved.

Proposition 4.1 The dynamical system (9) is
asymptotically stable, i.e. (u,p,d,1) — (0,0,0,0)
as t — oo in the appropriate energy space.

Hence, & describes an energy functional for (9),
which enables to ensure the stability of the sys-
tem without external inputs.
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