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Stability of space—time isogeometric methods for wave propagation problems
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Abstract

We investigate the first steps towards an uncon-
ditionally stable space—time isogeometric (IGA)
discretization for the second-order wave equa-
tion. Inspired by a finite element formulation
proposed by Steinbach and Zank, we propose a
stabilization of the isogeometric method for an
ordinary differential equation that is closely re-
lated to the wave equation. This suggests an
extension to wave propagation problems.
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1 Introduction

The space—time discretization of evolution equa-
tions is a fairly recent tool that offers approx-
imate solutions that are available at all times
in the interval of interest, in contrast to semi-
discretization and time-stepping techniques.

We focus on the following scalar, second-
order wave-propagation problem with homoge-
neous conditions

Onu—Au=g on Q x (0,7),
u=20 on 90 x (0,T), (1)
u=0u=0 on Q x {0},

where Q@ C R? is an open, bounded, Lipschitz
domain. A variational formulation of (1) with
integration by parts in both space and time is
considered in [2]. A CFL condition h; < Chy is
required for the stability of conforming tensor-
product space—time discretizations with piece-
wise-linear polynomials. Different approaches
have been proposed in order to overcome the
CFL condition. In [1] the stability of the con-
forming piecewise-linear FEM is addressed by
first studying the same discretization applied to
the Helmholtz ODE initial value problem

Ou(t) + pu(t) = f(t) te(0,T), @)
u(0) = (9ru)(0) =0

with g > 0. Linear-FEM unconditional stabil-

ity and optimal convergence rates in space—time

norms are proved for both (1) and (2) using a
perturbed variational formulation.

Motivated by the excellent numerical prop-
erties of the IGA method, we aim at extending
the techniques of [1] to high-order space—time
isogeometric discretizations.

2 Abstract variational problem

As in [1], our model problem is the ODE (2).
Define the following subspaces of H*(0,T):
H;,.(0,T) = {w € H'(0,T) : w(0) =0},
Hy(0,T) = {ve H'(0,T): v(T) =0},

endowed with the Sobolev seminorm | - |1 (g 7).
The variational formulation of (2) reads

{Find u € Hj,(0,T) such that 3)

a(uv U) = <f7v>(0,T) Vo € Hx},O(O?T)a

where T' > 0 and f € [H}((0,T)] are given,
and where the bilinear form is

a’('a ) : H&,*(OaT) X Hi,O(OvT) — R

a(w,v) == —(w, Ov) r2(0,1) + W, V) £2(0,T)-

As proven in (3], problem (3) is well-posed.

3 Isogeometric discretization

As discrete trial and test spaces for a conforming
Galerkin discretization of (3) we consider

ng* = Sﬁ(ov n H(%,*(()? 1),
Vg = 57(0,T) N H, (0, T),

where S7(0,T) is the space of degree-p piece-
wise-polynomials in CP~1(0,7T) (i.e. maximal-
regularity splines), and h is the mesh size. The
conforming Petrov—Galerkin isogeometric discre-
tization of (3) is

(4)

Find uy € Voh* such that
a(un,vn) = (f,vn)or)y Von € VN,

By extending Theorem 4.7 of [2] (in the case
p = 2) and by the use of compact perturbations
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Figure 1: The inf-sup constant of quadratic IGA in log
scale. The red line is condition (5).
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Figure 2: Relative errors of the non-stabilized IGA
discretization (4) for p = 2. The exact solution is u(t) =
sin® (37t), for ¢ € (0,10) and p = 1000.

techniques (for any p), we get two results of con-
ditional (w.r.t. h) stability for (4). However, nu-
merical results show that these two constraints
are not sharp; their improvement is currently
ongoing. Our numerical experiments also sug-
gest that, if the mesh size satisfies

h < \/3, (5)

then the quadratic isogeometric discretization
(4) is inf-sup stable; see Figures 1-2.

The stabilized bilinear form in [1, (17.13)]
can easily be written as

ap(Wp, V) = —(Opwn, Opvn) 12(0,1)
B
+ {wn, vn) £20m) 5 > hi{Ovwn, Ovn) r2(ry),
=1

where {7;};=1,..n, are the elements of the FEM
mesh. We thus propose to substitute in place of
a(+,+) in (4) the discrete bilinear form

an(wh, vp) = —(Ovwn, Opvn) 12(0,1) (6)
Ny

Hpwn, vR) 200, — Opit Y PP (0P wh, OY0R) L2y,
=1

where d, > 0 is a penalty parameter. The ef-
fect of this stabilization for p = 2 and §, = ﬁ
is visible in Figures 3-4, where we can observe
the enlargement of the stable region that cor-

responds to inf-sup values larger than ~ e~°.
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Figure 3: The inf-sup constant of the perturbed
quadratic IGA (6). The red line is condition (5).
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Figure 4: Relative errors of the perturbed IGA dis-
cretization (6) for p = 2. We see quadratic convergence
in |- |g1(0,r) and cubic in || - || L2(0,7)-

In particular, the inf-sup constant is stable for
h — 0 and fixed p.

4 Wave equation

Numerical tests show that a conforming isoge-
ometric discretization of the space—time varia-
tional formulation of (1), as introduced in [2],
requires a CFL condition. Following Section 3,
we propose to replace the bilinear form of the
space—time IGA scheme with

— (Own, Opvn) 12(Q) + (Vawn, Vavn)r2(q) (7)
d N

N 51?/ Z Z RGNS O O Vi) L2 (7))

m=1 =1

for 5};‘/ > 0. Numerical tests are ongoing.
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