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Abstract

A space–time Trefftz discontinuous Galerkin me-
thod for the Schrödinger equation with piecewise-
constant potential is presented. Trial and test
spaces are spanned by non-polynomial complex
wave functions that satisfy the Schrödinger equa-
tion locally on each element of the space–time
mesh. We prove well-posedness and stability of
the method, and optimal, high-order, h-conver-
gence error estimates in a skeleton norm. We
validate numerically our theoretical results pre-
sented.
Keywords: Linear Schrödinger equation, Trefftz
method, discontinuous Galerkin method.

1 Introduction

In this work we consider the following initial
boundary value problem for the homogeneous,
time-dependent Schrödinger equation on a space–
time cylinder Q = Ω×I, where Ω is an open and
bounded domain in Rd, d ∈ N, with Lipschitz
boundary ∂Ω and I = (0, T ), for some T > 0:

i∂tψ + ∆ψ − V ψ = 0, in Q, (1.1a)
ψ = gD on ∂Ω× I, (1.1b)

ψ(x, 0) = ψ0(x), on Ω. (1.1c)

Here the Dirichlet boundary datum gD and
the initial condition ψ0 are given functions; V :
Ω→ R is a piecewise-constant potential and the
Laplacian operator ∆ refers to the space vari-
able x only.

The model (1.1) arises from a wide number
of applications: it is the fundamental equation
of quantum mechanics, in optics it is known
as “paraxial wave equation” and approximates
the Helmholtz equation when the optical field
acts mostly along one specific axis (Fresnel’s ap-
proximation), while in underwater acoustics it is
called “parabolic equation”.

We present the main details in the formula-
tion and the analysis of the space–time Trefftz-
DG method for the linear Schrödinger equation
proposed in [2].

2 Trefftz-DG formulation

Let Th(Q) be a space–time finite element mesh
of Q, where each element K ∈ Th(Q) has a ten-
sor product structure K = Kx × In with Kx

being an element of a polytopic partition of Ω
and In is an interval in time.

The global Trefftz space T(Th) consists of
functions whose restriction to each cell K ∈
Th(Q) belongs to the following space

T(K) :=
{
w ∈ H1

(
In;L2(Kx)

)
∩ L2

(
In;H2 (Kx)

)

s.t. i∂tw + ∆w − V w = 0 on K = Kx × In
}
.

We consider a finite-dimensional subspace
Tp (Th) :=

∏
K∈Th Tp(K) ⊂ T(Th) defined for

each K = Kx× In ∈ Th(Q) and for p ∈ N as the
following set of complex exponentials:

Tp(K) := span
{
φ`(x, t), ` = 1, . . . , nd,p

}
, where

φ`(x, t) := exp
[
i
(
k`d
>
` x− (k2

` + V |K)t
)]

for ` = 1, . . . , nd,p,

for some parameters {k`} ⊂ R and directions
{d`} ⊂ Sd1 := {v ∈ Rd, |d| = 1}, which can be
chosen differently in each cell K. Since each φ`
solves (1.1a) in K, it is clear that Tp(K) is a
Trefftz space.

As numerical fluxes we use an upwind in
time and classical average in space with an ap-
propriate complex penalization. The Trefftz-
DG variational formulation is: seek ψhp ∈ Tp(Th)
such that A (ψhp; shp) = `(shp), ∀shp ∈ Tp(Th),
where
A (ψhp; shp) :=

∫

FD
h

(∇ψhp · ~nx
Ω + iαψhp) shp dS

+

∫

Ftime
h

(
{{∇ψhp}} · [[shp]]N + iα [[ψhp]]N · [[shp]]N

− {{ψhp}} [[∇shp]]N + iβ [[∇ψhp]]N [[∇shp]]N
)

dS
∫

Fspace
h

iψ−hp [[shp]]t dx +

∫

FT
h

iψhpshp dx,

`(shp) :=

∫

F0
h

iψ0shp dx

+

∫

FD
h

gD (∇shp · ~nx
Ω + iαshp) dS.
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As a result of the Trefftz property, the defini-
tions of A (·; ·) and `(·) in the variational formu-
lation are independent of the potential V , which
has an effect only on the discrete space.

Well-posedness and a quasi-optimality esti-
mate follow from the Lax–Milgram theorem and
the coercivity and continuity of A (·; ·).

3 Approximation estimate

The key idea to establish convergence rates in
the mesh size h was introduced by O. Cesse-
nat and B. Després in the proof of [1, Thm.3.7]
(in the case of the ultra weak variational formu-
lation applied to the Helmholtz equation): if,
given any smooth PDE solution ψ, the local dis-
crete space contains an element with the same
degree-p Taylor polynomial of ψ, then the space
enjoys the same h-approximation properties of
the space Pp of degree-p polynomials. The fol-
lowing condition implies that for any sufficiently
smooth Schrödinger solution ψ such an approx-
imant exists in the local Trefftz space.

Condition 1 Let B ⊂ K be a (d+1)-dimensional
ball such that K is star-shaped with respect to
B. Let {φ1, . . . , φnd,p

} ⊂ C∞(K) be a basis of
Tp(K). For every ψ ∈ T(K) ∩Hp+1(K), there
exists a complex vector-valued function a ∈ L1(B)nd,p

satisfying the following two conditions

For all |j| ≤ p and a.e. (z, s) ∈ B,

Djψ(z, s) =

nd,p∑

`=1

a`(z, s)D
jφ`(z, s),

‖|a|1‖L1(B) ≤ C?|K|1/2 ‖ψ‖Hp+1(K) ,

where C? > 0 might depend on d, p, and {φ`}
but is independent of K and ψ.
Theorem 1 provides the error estimate for the
Trefftz-DG approximation of (1.1) in the mesh
skeleton norm ||| · |||DG (defined in [2]) assuming
that Condition 1 holds true. A key ingredient in
the proof consists of estimating the approxima-
tion properties of the discrete Trefftz function

Φ(x, t) :=
1

|B|

nd,p∑

`=1

(∫

B
a`(z, s) dV (z, s)

)
φ`(x, t).

Theorem 1 Let p ∈ N. Let ψ ∈ T(Th)∩Hp+1(Th)
be the exact solution of (1.1) and ψhp ∈ Tp(Th)
be the Trefftz-DG solution with Tp(Th) satisfying
Condition 1 for all K ∈ Th(Q). Set the stabi-
lization parameters α and β as in [2], then there

exists a constant C independent of the mesh size
such that

|||ψ − ψhp|||DG ≤ C
∑

K∈Th(Q)

hpK ‖ψ‖Hp+1(K) ,

where hK := max{hKx , hn}.
In [2] we prove that Condition 1 is indeed true
for the (1+1) and (2+1) dimensional cases un-
der some restrictions of the tuning parameters
k` and d` for our basis choice.

4 Numerical experiments

We consider the (1+1)-dimensional Schrödinger
equation (1.1) on Q = (−2, 2) × (0, 1) with ho-
mogeneous Dirichlet boundary conditions and
the following square-well potential:

V (x) =

{
0, x ∈ (−1, 1),
V∗, x ∈ (−2, 2) \ (−1, 1),

for some V∗ > 0. The initial condition is taken
as an eigenfunction of −∂2

x + V on (−2, 2). The
solution of the corresponding initial boundary
value problem (1.1) is ψ(x, t) = ψ0(x) exp(−ik2

∗t),
where k∗ is a real root of the function f(k) :=√
V∗ − k2 − k tan(k) tanh(

√
V∗ − k2).

In Fig.1 we plot the DG norm of the Galerkin
error obtained for V∗ = 20 and a sequence of
space–time, uniform, Cartesian meshes.
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Figure 1: Trefftz-DG error for V∗ = 20 and k∗ ≈
3.7319.
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