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A space–time quasi-Trefftz DG method for the wave equation with smooth coefficients
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Abstract

We propose a quasi-Trefftz method to approx-
imate initial boundary value problems for the
acoustic wave equation with piecewise-smooth
material parameters. The key feature of the
scheme is that all discrete trial and test func-
tions are elementwise approximate solutions of
the wave equation. The quasi-Trefftz scheme is
framed in a space–time discontinuous Galerkin
(DG) setting. We prove stability and high-order
convergence, and show that the number of DOFs
needed to obtain a given accuracy is consider-
ably smaller than for schemes based on clas-
sical polynomial spaces. The quasi-Trefftz ba-
sis functions are polynomials in the space–time
variable and can be computed with a simple al-
gorithm. The inspiration comes from the gener-
alised plane waves developed for time-harmonic
problems with variable coefficients.
Keywords: quasi-Trefftz, space–time, discon-
tinuous Galerkin, wave equation.

1 Trefftz and quasi-Trefftz methods

Trefftz schemes are Galerkin methods whose test
and trial spaces are made of elementwise solu-
tions of the PDE to be approximated. They
are well-studied for homogeneous, linear PDEs
with piecewise-constant coefficients, see [3] for
the case of the wave equation. Other examples
of Trefftz schemes use harmonic polynomials for
the Laplace equation ∆u = 0 and plane waves
for the Helmholtz equation ∆u+ k2u = 0.

When the equation coefficients are not con-
stant, it is usually very difficult to construct
families of exact solutions with good approxi-
mation properties to use as basis functions, so
Trefftz schemes are not viable in this case.

Quasi-Trefftz methods use discrete spaces of
functions that are approximate solutions of the
PDE. With this, we mean that the Taylor poly-
nomial (of some given order m) of Lvh, L being
the PDE operator and vh any discrete function,

vanishes in a given point of each element of the
computational mesh. In this way it is possible to
construct low-dimensional discrete spaces with
excellent approximation properties.

Existing quasi-Trefftz methods for time-har-
monic problems use exponential basis functions
called “generalized plane waves”, see [1]. Here,
instead, we develop a quasi-Trefftz discretisa-
tion for the time-domain scalar wave equation
with variable coefficients. Building on the Tr-
efftz case studied in [3], we define space–time
quasi-Trefftz polynomial bases, we show how to
compute them and we use them in a DG scheme.

All details can be found in [2].

2 Variable-coefficient wave equation

We consider the following initial boundary value
problem for the first-order system corresponding
to the homogeneous acoustic wave equation:




∇v + ρ∂tσ = 0 in Q = Ω×(0, T ),

∇ · σ +G∂tv = 0 in Q,
v(·, 0) = v0, σ(·, 0) = σ0 on Ω ⊂ Rn,
v = gD on ∂Ω× (0, T ).

Here Ω ⊂ Rn is an open, bounded, Lipschitz
polytope, ρ,G > 0 are the material coefficients,
independent of time and piecewise-smooth, and
c := (ρG)−1/2 is the wavespeed. Neumann (σ ·
nx = gN ) and Robin (ϑv−σ ·nx = gR) bound-
ary conditions may also be included.

If ρσ0 is a gradient, then v = ∂tu and σ =
−1
ρ∇u, where u is a solution of the second-order,

scalar, homogeneous wave equation

�ρ,Gu := −∇ ·
(1

ρ
∇u
)

+G∂2t u = 0 in Q.

3 Local polynomial quasi-Trefftz spaces

Let K ⊂ Q be a space–time subdomain (a mesh
element) that is star-shaped with respect to a
centre point (xK , tK) ∈ K. Assume that the
material parameters ρ,G are sufficiently smooth
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in K. We define the local quasi-Trefftz spaces

QUp(K) :=
{
f ∈ Pp(K) | Di�ρ,Gf(xK , tK) = 0,

∀i ∈ Nn+1
0 , |i| ≤ p− 2

}
, p ∈ N,

QWp(K) :=
{(
∂tf,−

1

ρ
∇f
)
, f ∈ QUp+1(K)

}
,

where Pp(K) is the space of polynomials of de-
gree at most p on K, and Di, with multi-index
i = (ix, it) = (i1, . . . , in, it), denotes the space–
time partial derivative Di = ∂i1x1 · · · ∂inxn∂

it
t .

QUp(K) is the space of polynomials f of de-
gree at most p such that the degree-(p−2) Taylor
polynomial of �ρ,Gf at (xK , tK) is zero. Sim-
ilary, QWp(K) is the analogous space for the
first-order system. It is possible to define a third
kind of spaces QTp(K) for first-order systems
not coming from second-order equations.

For all smooth solutions u of �ρ,Gu = 0 in
K, the degree-p Taylor polynomial T [u](x, t) =∑
|i|≤p

(x−xK)ix (t−tK)it

i! Diu(x, t) belongs to the
space QUp(K). It follows that for all 0 ≤ q ≤ p

inf
P∈QUp(K)

|u−P |Cq(K) ≤ Cp,q,nrp+1−q
K |u|Cp+1(K),

where rK := sup(x,t)∈K |(x, t)− (xK , tK)|. This
means that the quasi-Trefftz space QUp(K) ap-
proximates all Cp+1(K) PDE solutions with the
same h-convergence rates of the full polynomial
space Pp(K). The advantage of the quasi-Trefftz
space is that it is a much smaller space:

dim
(
QUp(K)

)
= Op→∞(pn)

� dim
(
Pp(K)

)
= Op→∞(pn+1).

4 Basis function construction

We want to define a concrete basis of the quasi-
Trefftz space. We note that the coefficients ai of
the monomial expansion v(x, t) =

∑
|i|≤p ai(x−

xK)ix(t− tK)it of any quasi-Trefftz polynomial
v ∈ QUp(K) satisfy the recurrence relations

aix,it+2 = −
∑

jx<ix

gix−jx
g0ajx,it+2

+

n∑

l=1

∑

jx≤ix+el

(ixl + 1)(jxl + 1) ζix+el−jx
(it + 2)(it + 1) g0

ajx+el,it ,

where gi and ζi are the Taylor coefficients of G
and ρ−1 at (xK , tK). It is possible to order these
relations in such a way that all coefficients of v
can be computed from aix,0 and aix,1. It follows

that v is determined by its value and the value
of ∂tv at time t = tK .

This implies that, given a basis B̂ of Pp(Rn)
and a basis B̃ of Pp−1(Rn) (these are polyno-
mials in x only), we can construct a basis B of
QUp(K) such that each bJ ∈ B satisfies either
{
bJ(·, tK) ∈ B̂,
∂tbJ(·, tK) = 0,

or

{
bJ(·, tK) = 0,

∂tbJ(·, tK) ∈ B̃.

Then the relations above allow to explicitly com-
pute the coefficients ai of the monomial expan-
sion of bJ with a simple iterative algorithm.

5 Quasi-Trefftz DG method

Let Th be a polytopic mesh that partitions the
space–time cylinder Q. The global quasi-Trefftz
space

∏
K∈Th QW

p(K) is used as trial and test
discrete space of a DG method that extends the
one introduced in [3]. The formulation employs
centred-in-space and upwind-in-time numerical
fluxes on interior mesh faces.

In [2] we show that, under appropriate as-
sumptions, the DG scheme is well-posed and we
prove high-order h-convergence rates. These are
optimal in a skeleton norm and half-order sub-
optimal at final time (i.e. in L2(Ω×{T}) norm).

Numerical examples validate the theoreti-
cal results for both Cartesian-product and tent-
pitched space–time meshes. These meshes give
rise to a sort of implicit and explicit advance-
ment in time, respectively. The main advantage
compared to standard DG schemes is the faster
convergence in terms of the number of degrees
of freedom.
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