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A space—time quasi-Trefftz DG method for the wave equation with smooth coefficients
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Abstract

We propose a quasi-Trefftz method to approx-
imate initial boundary value problems for the
acoustic wave equation with piecewise-smooth
material parameters. The key feature of the
scheme is that all discrete trial and test func-
tions are elementwise approximate solutions of
the wave equation. The quasi-Trefftz scheme is
framed in a space-time discontinuous Galerkin
(DG) setting. We prove stability and high-order
convergence, and show that the number of DOFs
needed to obtain a given accuracy is consider-
ably smaller than for schemes based on clas-
sical polynomial spaces. The quasi-Trefftz ba-
sis functions are polynomials in the space—time
variable and can be computed with a simple al-
gorithm. The inspiration comes from the gener-
alised plane waves developed for time-harmonic
problems with variable coefficients.

Keywords: quasi-Trefftz, space-time, discon-
tinuous Galerkin, wave equation.

1 Trefftz and quasi-Trefftz methods

Trefftz schemes are Galerkin methods whose test
and trial spaces are made of elementwise solu-
tions of the PDE to be approximated. They
are well-studied for homogeneous, linear PDEs
with piecewise-constant coefficients, see [3] for
the case of the wave equation. Other examples
of Trefftz schemes use harmonic polynomials for
the Laplace equation Au = 0 and plane waves
for the Helmholtz equation Au + k*u = 0.
When the equation coefficients are not con-
stant, it is usually very difficult to construct
families of exact solutions with good approxi-
mation properties to use as basis functions, so
Trefftz schemes are not viable in this case.
Quasi-Trefftz methods use discrete spaces of
functions that are approximate solutions of the
PDE. With this, we mean that the Taylor poly-
nomial (of some given order m) of Lvp, L being
the PDE operator and vy, any discrete function,

vanishes in a given point of each element of the
computational mesh. In this way it is possible to
construct low-dimensional discrete spaces with
excellent approximation properties.

Existing quasi-Trefftz methods for time-har-
monic problems use exponential basis functions
called “generalized plane waves”, see [1]. Here,
instead, we develop a quasi-Trefftz discretisa-
tion for the time-domain scalar wave equation
with variable coeflicients. Building on the Ttr-
efftz case studied in [3]|, we define space—time
quasi-Trefftz polynomial bases, we show how to
compute them and we use them in a DG scheme.

All details can be found in [2].

2 Variable-coefficient wave equation

We consider the following initial boundary value
problem for the first-order system corresponding
to the homogeneous acoustic wave equation:

Vv + poo =0 in@Q=0Qx(0,7),
V-o+Gohv=0 in Q,

v(+,0) =, o(-,0) =00 on Q CR",
v=gp on 00 x (0, 7).

Here €2 C R™ is an open, bounded, Lipschitz
polytope, p, G > 0 are the material coefficients,
independent of time and piecewise-smooth, and
¢ := (pG)~1/? is the wavespeed. Neumann (o -
ny = gy) and Robin (Yv — o - nx = gr) bound-
ary conditions may also be included.

If pog is a gradient, then v = Ju and o =
— %Vu, where u is a solution of the second-order,
scalar, homogeneous wave equation

O,cu = —V - (;Vu> Y GPu=0 inQ.

3 Local polynomial quasi-Trefftz spaces

Let K C @ be a space-time subdomain (a mesh
element) that is star-shaped with respect to a
centre point (xx,tx) € K. Assume that the
material parameters p, G are sufficiently smooth
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in K. We define the local quasi-Trefftz spaces

QUP(K):={f € PP(K) | D'O, ¢ f(xx,tx) =0,
vie N lij<p—2}, peN,

@ ()= (0.5 91). f e @)},

where PP(K) is the space of polynomials of de-
gree at most p on K, and D', with multi-index
i= (ix, %) = (i1,...,0n, 1), denotes the space—
time partial derivative D' = 9t .- - 9in ot

QUP(K) is the space of polynomials f of de-
gree at most p such that the degree-(p—2) Taylor
polynomial of [, ¢ f at (xg,tx) is zero. Sim-
ilary, QWP (K) is the analogous space for the
first-order system. It is possible to define a third
kind of spaces QI?(K) for first-order systems
not coming from second-order equations.

For all smooth solutions u of U, gu = 0 in
K, the degree-p Taylor polynomial T'[u](x,t) =
> jil<p G (=)™ Py, (x,t) belongs to the

i!

spacé QUP(K). It follows that forall0 < g <p

. 1—
inf |u—Ploa) < Cpgnr ' ulew ),

PeQUP(K)
where 7 1= supy yex [(X,t) — (XK, tx)[. This
means that the quasi-Trefftz space QUP(K) ap-
proximates all CP*!(K) PDE solutions with the
same h-convergence rates of the full polynomial
space PP(K'). The advantage of the quasi-Trefftz
space is that it is a much smaller space:

dim (QUP(K)) = Opyoo (p")

< dim (PP(K)) nly,

= Opaoo (p

4 Basis function construction

We want to define a concrete basis of the quasi-
Trefftz space. We note that the coefficients a; of
the monomial expansion v(x,t) = > ;< ai(x

X ) (t — tg)" of any quasi-Trefftz polynomial
v € QUP(K) satisfy the recurrence relations

Jix—j
Giiga = — Y —=—

Jre<in 9oQj, i 42

le + 1 ]xl + 1) <1x+el —jx
S Giterio
I=1 jx<inter Zt + 2 (Zt + 1) go

where g; and ¢ are the Taylor coefficients of G
and p~! at (xg,tx). It is possible to order these
relations in such a way that all coefficients of v
can be computed from a;_ o and a;j 1. It follows

that v is determined by its value and the value
of Jyv at time t = tg.

This implies that, given a basis B of PP(R™)
and a basis B of PP~1(R") (these are polyno-
mials in x only), we can construct a basis B of
QUP(K) such that each by € B satisfies either

by(-tx) € é o bt =0,
Oby( i) = Oby(- i) € B.
Then the relations above allow to explicitly com-

pute the coefficients a; of the monomial expan-
sion of by with a simple iterative algorithm.

5 Quasi-Trefftz DG method

Let 73 be a polytopic mesh that partitions the
space—time cylinder Q. The global quasi-Trefftz
space [[xer, QWP(K) is used as trial and test
discrete space of a DG method that extends the
one introduced in |3|. The formulation employs
centred-in-space and upwind-in-time numerical
fluxes on interior mesh faces.

In [2] we show that, under appropriate as-
sumptions, the DG scheme is well-posed and we
prove high-order h-convergence rates. These are
optimal in a skeleton norm and half-order sub-
optimal at final time (i.e. in L?(2x {T'}) norm).

Numerical examples validate the theoreti-
cal results for both Cartesian-product and tent-
pitched space—time meshes. These meshes give
rise to a sort of implicit and explicit advance-
ment in time, respectively. The main advantage
compared to standard DG schemes is the faster
convergence in terms of the number of degrees
of freedom.
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