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Abstract

The imposition of interface conditions for the
piecewise homogeneous dynamic beam equation

(DBE) is considered. Based on high order summation-

by-parts finite differences, two novel energy sta-
ble methods are presented. Numerical experi-
ments comparing the methods verify the theo-
retical convergence expectations and show that
both methods are similar in terms of accuracy.
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1 Introduction

The dynamic beam equation (DBE) is a stan-
dard beam theory model describing the motion
of free vibrations of a Euler-Bernoulli beam. To-
day it is used in construction of infrastructure
involving beams such as buildings, bridges and
railways.

The DBE is a dispersive wave equation for
which the group velocity depends linearly on
the wave number [1|. Consequently, the time
step of any numerical method must scale as the
square of the spatial step to resolve high fre-
quency components of the solution. To keep
the spatial step size small and still obtain an
accurate solution, a high order finite difference
method with summation-by-parts (SBP) prop-
erties is suggested. Together with either the
projection method (SBP-P) or simultaneous ap-
proximation terms (SBP-SAT) to impose the in-

terface conditions, the resulting numerical schemes

can be proven stable using the energy method.

In this short paper novel SBP-P and SBP-
SAT discretizations are presented and compared
for the DBE with discontinuous material param-
eters. To save space, the proofs of energy con-
servation for the continuous and the two semi-
discrete problems are omitted.

2 Continuous problem

The dynamic beam equation with a material dis-
continuity at = 0 is given by
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where a(2) and 512 are positive constants in-
corporating the material parameters in each block
and u and v denote the solutions in each block.
The interface conditions at x = 0 ensuring en-
ergy conservation are given by

3 Semi-discrete problem

The two blocks [—1,0] and [0, 1] are discretized
into equidistant grids with m grid points and
step size h. Let u and v denote the semi-discrete
solution vectors. The spatial discretizations are
done using SBP operators of 2nd-, 4th and 6th-
order accuracy in the interior (see [1]) satisfying

Dy = H™ (N 4 exdfy + digdgy + e,d, — duydi,, )

where H = H' > 0 is a diagonal matrix, N =
NT >0, ¢; and e, are the first and last columns
of the m x m identity matrix and dy,;, di,., doy,
da., d3y and dz. are one-sided finite difference
approximations of the first, second and third
normal derivatives at the left and right bound-
ary points. Furthermore, the matrix N can be
decomposed as

N=N+ hagr (dg;ld;l + d2;rd;—;r>

(3)
+ hiaqr (dS;ldgT;l + ds;rdgT;r) ;

where N = NT > 0 and ayr and agyr are posi-
tive constants not dependent on h.



WAVES 2022, Palaiseau, France

3.1 SBP-P discretization

A consistent and stable semi-discrete approxi-
mation of (1) with the interface conditions (2)
imposed using the projection method [2] is given
by

where
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The projection operator is given by
P=1Iy, - H'L"(LH L)L, (5

where Is,, is the 2m x 2m identity matrix and
L is given by
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3.2 SBP-SAT discretization

A consistent and stable semi-discrete approxi-
mation of (1) with the interface conditions (2)
imposed using the SAT method [1] is given by
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and a7 and agyr are chosen so that IV is positive
semi-definite.

4 Numerical results

The accuracies of the two methods are evaluated
by an analytical solution derived using separa-
tion of variables with ¢V = 1, ¢ = 4 and
b(1:2) = 1. To isolate the influence of the inter-
face the blocks are coupled at both ends, i.e.
at x = 0 and * = =1, resulting in a peri-
odic problem. The second order ODE systems
are integrated using a compact and explicit 4th
order accurate finite difference time marching
scheme [1]. The time step is chosen such that
the spatial error dominates the temporal error.

In Figure 1 the error versus step size is plot-
ted for the 2nd, 4th and 6th order operators with
SBP-P and SBP-SAT. The results indicate that
the theoretical convergence rates are obtained
and that the methods are very similar in terms
of accuracy.
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Figure 1: Error versus step size for 2nd, 4th
and 6th order SBP-SAT and SBP-P discretiza-
tions. The dashed lines indicate the theoretical
convergence rates 2, 4 and 5.

5 Conclusions

Two novel and stable methods of imposing inter-
face conditions for the piecewise homogeneous
dynamic beam equation are presented. Numer-
ical experiments demonstrates that both meth-
ods obtain the expected theoretical convergence
rates.
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