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Abstract

The imposition of interface conditions for the
piecewise homogeneous dynamic beam equation
(DBE) is considered. Based on high order summation-
by-parts finite differences, two novel energy sta-
ble methods are presented. Numerical experi-
ments comparing the methods verify the theo-
retical convergence expectations and show that
both methods are similar in terms of accuracy.
Keywords: dynamic beam equation, interface
treatment, summation by parts, finite differences

1 Introduction

The dynamic beam equation (DBE) is a stan-
dard beam theory model describing the motion
of free vibrations of a Euler-Bernoulli beam. To-
day it is used in construction of infrastructure
involving beams such as buildings, bridges and
railways.

The DBE is a dispersive wave equation for
which the group velocity depends linearly on
the wave number [1]. Consequently, the time
step of any numerical method must scale as the
square of the spatial step to resolve high fre-
quency components of the solution. To keep
the spatial step size small and still obtain an
accurate solution, a high order finite difference
method with summation-by-parts (SBP) prop-
erties is suggested. Together with either the
projection method (SBP-P) or simultaneous ap-
proximation terms (SBP-SAT) to impose the in-
terface conditions, the resulting numerical schemes
can be proven stable using the energy method.

In this short paper novel SBP-P and SBP-
SAT discretizations are presented and compared
for the DBE with discontinuous material param-
eters. To save space, the proofs of energy con-
servation for the continuous and the two semi-
discrete problems are omitted.

2 Continuous problem

The dynamic beam equation with a material dis-
continuity at x = 0 is given by

b(1)utt = −a(1)uxxxx, x ∈ [−1, 0],

b(2)vtt = −a(2)vxxxx, x ∈ [0, 1],
(1)

where a(1,2) and b(1,2) are positive constants in-
corporating the material parameters in each block
and u and v denote the solutions in each block.
The interface conditions at x = 0 ensuring en-
ergy conservation are given by

u = v,

ux = vx,

a(1)uxx = a(2)vxx,

a(1)uxxx = a(2)vxxx.

(2)

3 Semi-discrete problem

The two blocks [−1, 0] and [0, 1] are discretized
into equidistant grids with m grid points and
step size h. Let u and v denote the semi-discrete
solution vectors. The spatial discretizations are
done using SBP operators of 2nd-, 4th and 6th-
order accuracy in the interior (see [1]) satisfying

D4 = H−1
(
N + eld

>
3;l + d1;ld

>
2;l + erd

>
3;r − d1;rd>2;r

)
,

where H = H> > 0 is a diagonal matrix, N =
NT ≥ 0, el and er are the first and last columns
of the m×m identity matrix and d1;l, d1;r, d2;l,
d2;r, d3;l and d3;r are one-sided finite difference
approximations of the first, second and third
normal derivatives at the left and right bound-
ary points. Furthermore, the matrix N can be
decomposed as

N = Ñ + hαII

(
d2;ld

>
2;l + d2;rd

>
2;r

)

+ h3αIII

(
d3;ld

>
3;l + d3;rd

>
3;r

)
,

(3)

where Ñ = Ñ> ≥ 0 and αII and αIII are posi-
tive constants not dependent on h.
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3.1 SBP-P discretization

A consistent and stable semi-discrete approxi-
mation of (1) with the interface conditions (2)
imposed using the projection method [2] is given
by

(B ⊗ Im)wtt = −P (A⊗D4)Pw, (4)

where

w =

[
u
v

]
, B =

[
b(1) 0

0 b(2)

]
, A =

[
a(1) 0

0 a(2)

]
.

The projection operator is given by

P = I2m − H̄−1L>(LH̄−1L>)−1L, (5)

where I2m is the 2m × 2m identity matrix and
L is given by

L =




e>r −e>l
d>1;r d>1;l

a(1)d>2;r a(2)d>2;l
a(1)d>3;r a(2)d>3;l


 . (6)

3.2 SBP-SAT discretization

A consistent and stable semi-discrete approxi-
mation of (1) with the interface conditions (2)
imposed using the SAT method [1] is given by

b(1)utt = a(1)D4u

−H−1( τ
h3
er +

a(1)

2
d3;r)(e

>
r u− e>l v)

−H−1(σ
h
d1;r −

a(1)

2
d2;r)(d

>
1;ru+ d>1;lv)

− 1

2
H−1d1;r(a(1)d>2;ru+ a(2)d>2;lv)

+
1

2
H−1er(a(1)d>3;ru+ a(2)d>3;lv),

b(2)vtt = a(2)D4v

−H−1( τ
h3
el +

a(2)

2
d3;l)(e

>
l v − e>r u)

−H−1(σ
h
d1;l +

a(2)

2
d2;l)(d

>
1;lv + d>1;ru)

+
1

2
H−1d1;l(a

(2)d>2;lv + a(1)d>2;ru)

+
1

2
H−1el(a

(2)d>3;lv + a(1)d>3;ru),

where

τ =
1

4αIII
(a(1) + a(2)), σ =

1

4αII
(a(1) + a(2)),

and αII and αIII are chosen so that Ñ is positive
semi-definite.

4 Numerical results

The accuracies of the two methods are evaluated
by an analytical solution derived using separa-
tion of variables with a(1) = 1, a(2) = 4 and
b(1,2) = 1. To isolate the influence of the inter-
face the blocks are coupled at both ends, i.e.
at x = 0 and x = ±1, resulting in a peri-
odic problem. The second order ODE systems
are integrated using a compact and explicit 4th
order accurate finite difference time marching
scheme [1]. The time step is chosen such that
the spatial error dominates the temporal error.

In Figure 1 the error versus step size is plot-
ted for the 2nd, 4th and 6th order operators with
SBP-P and SBP-SAT. The results indicate that
the theoretical convergence rates are obtained
and that the methods are very similar in terms
of accuracy.
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Figure 1: Error versus step size for 2nd, 4th
and 6th order SBP-SAT and SBP-P discretiza-
tions. The dashed lines indicate the theoretical
convergence rates 2, 4 and 5.

5 Conclusions

Two novel and stable methods of imposing inter-
face conditions for the piecewise homogeneous
dynamic beam equation are presented. Numer-
ical experiments demonstrates that both meth-
ods obtain the expected theoretical convergence
rates.
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