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Abstract

Frequency/time hybrid integral-equation meth-

ods [1] for transient wave scattering have been

demonstrated to provide a highly efficient and

accurate, trivially parallelizable means to com-

pute solutions to time-domain scattering prob-

lems. We discuss further enhancements for high-

fidelity simulation of scattering of long wave-

trains via connection to newly-developed results

in time-domain scattering theory. The new the-

ory impacts on several long-standing problems

in scattering theory, resolving open questions re-

lating to “domain-of-dependence” and decay for

problems of wave scattering by bounded, possi-

bly trapping, obstacles. In particular, we present
the first rapid decay estimates for connected trap-
ping obstacles and provide norm-bounds on phys-
ical surface quantities in terms of measurements

over a finite history of time. The theory leads to

efficient sum-truncation numerical analysis re-

sults for hybrid wave scattering methods that

justify an O(1) asymptotic cost for producing

solutions at arbitrarily large times.
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1 Introduction

Frequency-time hybrid methods [1]| for the ob-
stacle scattering problem

@(rt)—QA (r,t)=0, reQ° (1a)
at2 b C u ) - bl ) a’
u(r,0) = 2(r,0) =0, (1b)

u(r,t) =b(x,t) (r,¢) €T x 0,7, (lc)

with Lipschitz boundary I' = 91, rely on Fourier
time transformation of the incident wavefield
b in conjunction with certain time-partitioning
and windowing techniques which serve to allow
solutions at all times ¢ to be computed on the
basis of solutions to a fixed set of frequency-

domain problems. Briefly, the method uses well-
spaced time-window centers s, € [0,7%] and
smooth compactly-supported window functions
wi(t) = w(t — si) to expand b in a partition
of unity representation b(r,t) = Zle by (r, 1),
where the functions by are temporally-localized
“wave packets” that also solve (la) and serve
as boundary data for solutions uy to (1). The
solution results by reconstruction via the sum
u(r,t) =SSR ug(r,t).

We will present efficient means to produce
solutions uy at arbitrary times ¢ at O(1) cost.
Furthermore, it is important to note that since
K = O(T™) the sum-representation of u in
principle involves an increasing number of so-
lutions u,—an issue that we resolve in what fol-
lows on the basis of solution decay.

2 3D decay and sum-truncation

In our surface-scattering context, we use the
representation formula,

uk(r> t) = (Sﬂ%)(r, t)a @ZJk = anu]tg()ta

with S the time-domain single layer potential,
from which it follows that if bounds on v, can be
established, then the contribution of wu; to the
full solution u on certain space-time regions R X
T can be neglected with provably small error:

Lemma. Let R C Q° satisfy dist(R,T') > 0,
and denote by Ty a given observation time. Then
there exists a (known) constant C(R) such that

sup  ug(r, )] < O sup [[¢r (-, )l 2 (r) »
t>To+rmax/c t>Ty

where Tmax = MaxpeR per [T — 1.

We develop a novel class of time-domain esti-
mates: “domain-of-dependence” estimates that
bound % in terms of its values over a finite
time-history of length about diam(2)/c.

We show more, that in fact solutions decay:
the decay theorem applies to obstacles satisfy-
ing a certain ¢-growth condition, known to be
satisfied by a variety of obstacles.
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Theorem ([2]). Let T' be the boundary of an obstacle Q C R3 satisfying a q-growth condition and
assume that the incident wavefield packet by, is sufficiently smooth. Let I, be any time interval (with
upper limit Ty ) with length exceeding diam(Q2)/c and laying after the incident packet ceases on Q. Then
for each positive integer n there exists a C' > 0 independent of by, and of Ty such that Yy, satisfies

1 )l ary < O = To) 27" [kl puaein gy 2y for all ¢ > To.

Figure 1: Deep rectangular cavity that satisfies
a g-growth condition.

Definition (g-growth condition). A Lipschitz
obstacle € satisfies a q-growth condition if there
exists a C' > 0 such that for a non-negative q the
frequency-domain combined-field operator A,, sat-
1sfies

HAJIHLz(F)HLz(F) <Cw? as w— .

The decay theorem above enables the fol-
lowing numerical analysis result for hybrid fre-
quency /time methods, showing that only an O(1)
number of solutions u; need to be computed for
approximation (within some tolerance £*!) of
the solution w.

Theorem ([3]). Let T be the boundary of an ob-
stacle that satisfies a q-growth condition. For
smooth incident data, a region of space R of
diameter D, and a time interval T of length
Dy, there exist for every €' > 0 an integer
M (%!, D,, Dy) and certain integers M; and My
satisfying My — M; = M so that for all incident
wavefields

Mp—1
sup U(I‘,t) - Z Uk(r,t) < C(Fa DT» Dt)etOI‘
teT k=M
reR -

Numerical experiments confirm the guaran-
tees of this theorem for problems with incident
wavetrains of many thousands of wavelengths in
duration (Figure 2).

3 Classical Scattering Theory

Our primary decay theorem is a result of inde-
pendent interest in the field of scattering the-
ory, as it is the first decay result not based on
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Figure 2: Timeline plot of relevance of individ-
ual densities 1, to the overall solution u, as mea-

sured by being less than a tolerance %!

the classical Lax-Phillips approach which has
not been used to establish wave decay for any
of the known trapping obstacles that have res-
onances lying arbitrarily close to the real axis
(i.e. when wave solutions cannot be exponen-
tially decaying). Our techniques are based on
real-axis estimates (based on the g-growth con-
dition) and use integration by parts as well as
frequency-differentiated boundary integral den-
sities, resulting in the first rapid decay estimates
(a) In connected-trapping contexts and (b) In
contexts where trapped orbits span the full vol-
ume of a physical cube (Figure 1).
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