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Abstract

Frequency/time hybrid integral-equation meth-
ods [1] for transient wave scattering have been
demonstrated to provide a highly efficient and
accurate, trivially parallelizable means to com-
pute solutions to time-domain scattering prob-
lems. We discuss further enhancements for high-
fidelity simulation of scattering of long wave-
trains via connection to newly-developed results
in time-domain scattering theory. The new the-
ory impacts on several long-standing problems
in scattering theory, resolving open questions re-
lating to “domain-of-dependence” and decay for
problems of wave scattering by bounded, possi-
bly trapping, obstacles. In particular, we present
the first rapid decay estimates for connected trap-
ping obstacles and provide norm-bounds on phys-
ical surface quantities in terms of measurements
over a finite history of time. The theory leads to
efficient sum-truncation numerical analysis re-
sults for hybrid wave scattering methods that
justify an O(1) asymptotic cost for producing
solutions at arbitrarily large times.
Keywords: transient wave propagation, integral
equations, decay theory, domain-of-dependence
bounds

1 Introduction

Frequency-time hybrid methods [1] for the ob-
stacle scattering problem

∂2u

∂t2
(r, t)− c2∆u(r, t) = 0, r ∈ Ωc, (1a)

u(r, 0) =
∂u

∂t
(r, 0) = 0, (1b)

u(r, t) = b(r, t) (r, t) ∈ Γ× [0, T inc], (1c)

with Lipschitz boundary Γ = ∂Ω, rely on Fourier
time transformation of the incident wavefield
b in conjunction with certain time-partitioning
and windowing techniques which serve to allow
solutions at all times t to be computed on the
basis of solutions to a fixed set of frequency-

domain problems. Briefly, the method uses well-
spaced time-window centers sk ∈ [0, T inc] and
smooth compactly-supported window functions
wk(t) = w(t − sk) to expand b in a partition
of unity representation b(r, t) =

∑K
k=1 bk(r, t),

where the functions bk are temporally-localized
“wave packets” that also solve (1a) and serve
as boundary data for solutions uk to (1). The
solution results by reconstruction via the sum
u(r, t) =

∑K
k=1 uk(r, t).

We will present efficient means to produce
solutions uk at arbitrary times t at O(1) cost.
Furthermore, it is important to note that since
K = O(T inc) the sum-representation of u in
principle involves an increasing number of so-
lutions uk—an issue that we resolve in what fol-
lows on the basis of solution decay.

2 3D decay and sum-truncation

In our surface-scattering context, we use the
representation formula,

uk(r, t) = (Sψk)(r, t), ψk = ∂nu
tot
k ,

with S the time-domain single layer potential,
from which it follows that if bounds on ψk can be
established, then the contribution of uk to the
full solution u on certain space-time regions R×
T can be neglected with provably small error:

Lemma. Let R ⊂ Ωc satisfy dist(R,Γ) > 0,
and denote by T0 a given observation time. Then
there exists a (known) constant C(R) such that

sup
t>T0+rmax/c

|uk(r, t)| ≤ C sup
t>T0

‖ψk(·, t)‖L2(Γ) ,

where rmax = maxr∈R,r′∈Γ |r− r′|.
We develop a novel class of time-domain esti-

mates: “domain-of-dependence” estimates that
bound ψk in terms of its values over a finite
time-history of length about diam(Ω)/c.

We show more, that in fact solutions decay:
the decay theorem applies to obstacles satisfy-
ing a certain q-growth condition, known to be
satisfied by a variety of obstacles.
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Theorem ([2]). Let Γ be the boundary of an obstacle Ω ⊂ R3 satisfying a q-growth condition and
assume that the incident wavefield packet bk is sufficiently smooth. Let IT0 be any time interval (with
upper limit T0) with length exceeding diam(Ω)/c and laying after the incident packet ceases on Ω. Then
for each positive integer n there exists a C > 0 independent of bk and of T0 such that ψk satisfies

‖ψk(·, t)‖L2(Γ) ≤ C(t− T0)1/2−n ‖ψk‖Hn(q+1)+1(IT0 ;L2(Γ)) for all t > T0.

Figure 1: Deep rectangular cavity that satisfies
a q-growth condition.

Definition (q-growth condition). A Lipschitz
obstacle Ω satisfies a q-growth condition if there
exists a C > 0 such that for a non-negative q the
frequency-domain combined-field operator Aω sat-
isfies

∥∥A−1
ω

∥∥
L2(Γ)→L2(Γ)

≤ Cωq as ω →∞.

The decay theorem above enables the fol-
lowing numerical analysis result for hybrid fre-
quency/time methods, showing that only anO(1)
number of solutions uk need to be computed for
approximation (within some tolerance εtol) of
the solution u.

Theorem ([3]). Let Γ be the boundary of an ob-
stacle that satisfies a q-growth condition. For
smooth incident data, a region of space R of
diameter Dr and a time interval T of length
Dt, there exist for every εtol > 0 an integer
M(εtol, Dr, Dt) and certain integers Mi and Mf

satisfying Mf −Mi = M so that for all incident
wavefields

sup
t∈T
r∈R

∣∣∣∣∣∣
u(r, t)−

Mf−1∑

k=Mi

uk(r, t)

∣∣∣∣∣∣
≤ C(Γ, Dr, Dt)ε

tol.

Numerical experiments confirm the guaran-
tees of this theorem for problems with incident
wavetrains of many thousands of wavelengths in
duration (Figure 2).

3 Classical Scattering Theory

Our primary decay theorem is a result of inde-
pendent interest in the field of scattering the-
ory, as it is the first decay result not based on

Figure 2: Timeline plot of relevance of individ-
ual densities ψk to the overall solution u, as mea-
sured by being less than a tolerance εtol.

the classical Lax-Phillips approach which has
not been used to establish wave decay for any
of the known trapping obstacles that have res-
onances lying arbitrarily close to the real axis
(i.e. when wave solutions cannot be exponen-
tially decaying). Our techniques are based on
real-axis estimates (based on the q-growth con-
dition) and use integration by parts as well as
frequency-differentiated boundary integral den-
sities, resulting in the first rapid decay estimates
(a) In connected-trapping contexts and (b) In
contexts where trapped orbits span the full vol-
ume of a physical cube (Figure 1).
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