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Abstract

In this talk, we consider a specific class of non-
autonomous wave equations on a smooth, boun-
ded domain and their discretization in space by
isoparametric finite elements and in time by the
implicit Euler method. Building upon the work
of Baker and Dougalis (1980), we prove maxi-
mum norm estimates for the semi discretization
in space and the full discretization. The key tool
is the gain of integrability coming from the in-
verse of the spatially discretized differential op-
erator. For this, we have to bound differentiated
initial errors in the energy norm.
Keywords: error analysis, full discretization,
wave equation, maximum norm error bounds,
nonconforming space discretization, isoparamet-
ric finite elements, a-priori error bounds.

1 Introduction

We consider non-autonomous wave equations of
the form

∂ttu(t) = λ(t)−1∆u(t) + f(t), (1)

subject to homogeneous Dirichlet boundary con-
ditions for t ∈ [0, T ] on a domain Ω ⊂ RN ,
N = 2, 3, with sufficiently regular boundary
Γ. In space, we employ isoparametric finite el-
ements and in time the implicit Euler scheme.
Following the approach in [1], we derive maxi-
mum norm error bounds for the semi- and full
discretization. The main application we have in
mind is the quasilinear wave equation

∂ttu(t) = λ(u(t))−1∆u(t) + f(t, u(t)). (2)

In order to guarantee well-posedness of (2), one
exploits a pointwise lower bound on λ(u) and
this property has to be conserved in the dis-
cretization. Up to now, this is ensured via in-
verse estimates that either lead to a CFL condi-
tions or to a restriction on the minimal polyno-
mial degree of the ansatz space. By our linear
results, we hope to show that these constraints

are only of theoretical nature and can be re-
moved.

2 Discretization in space

We consider the unified error analysis introduced
in [3] and reformulate (1) as a first-order system

∂ty(t) = Λ(t)−1Ay(t) + F (t), (3)

in the product space X = H1
0 (Ω)×L2(Ω), with

y =
(
u , ∂tu

)
and initial value y(0) = y0, opera-

tors

Λ(t) =

(
Id 0
0 λ(t)

)
, A =

(
0 Id
∆ 0

)
,

and F (t) =
(
0 , f(t)

)
. Further, we consider the

spatially discretized version on a finite dimen-
sional space Xh

∂tyh(t) = Λh(t)−1Ahyh(t) + Fh(t),

on the computational domain Ωh ≈ Ω. In order
to relate functions on the two (in general) dif-
ferent domains, we introduce a lift operator Lh
mapping functions on Ωh to functions on Ω.

For technical reasons, we have to make the
following assumption on λ, which ensures the
preservation of boundary conditions.

Assumption 1 There is some `max ≥ 4 such
that for 0 ≤ ` ≤ `max and u ∈ D((−∆)`/2) it
holds

λu, λ−1u ∈ D
(
(−∆)`/2

)
.

A sufficient conditions for this assumption is
for example given by

∇λ
∣∣
Γ

= 0 .

In [2], we obtained the following semidiscrete
error bound.

Theorem 2 Let ∂Ω ∈ Ck+1,1, `max ≥ 2, and
let u and λ be sufficiently regular. If the discrete
initial value yh(0) is chosen appropriately, then
it holds

‖y(t)− Lhyh(t)‖L∞×L∞ ≤ Chk,
where C is independent of h.
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3 Discretization in space and time

We denote the time step by τ > 0 and write the
implicit Euler method in the form

∂τy
n
h = (Λnh)−1Ahy

n
h + Fnh , (4)

where we use the discrete derivative

∂τϕ
n =

1

τ

(
ϕn − ϕn−1

)
.

For the fully discrete solution (4), we show the
following error bound, see [2].

Theorem 3 Let ∂Ω ∈ Ck+1,1, `max ≥ 4, and
let u and λ be sufficiently regular. If the dis-
crete initial value y0

h is chosen appropriately,
then there is τ0 > 0 such that for τ ≤ τ0 and
n ≥ 3 we have the error bound

‖y(tn)− Lhynh‖L∞×L∞ ≤ Cτ +Chmin{k,`max−2},

where C is independent of h and τ , and τ0 is
independent of h.

We note that by a slightly different approach,
we prove similar convergence rates for the first
approximations yjh, j = 0, 1, 2.

4 Strategy of the proof

In the continuous case, one can employ Sobolev’s
embedding H2(Ω) ↪→ L∞(Ω) to obtain maxi-
mum norm bounds on the solution u. However,
this is not possible for uh since the Lagrangian
finite elements are not H2-conforming.

Denoting the inverse of the discretized dif-
ferential operator A−1

h , we can generalize the
following result from [1], and still obtain inte-
grability in the discrete case.

Lemma 4 Let ∂Ω ∈ C1,1 and p, q, r ≥ 2 with
0 ≤ 1

r − 1
p <

1
N . Then, it holds for ξh ∈ Xh

∥∥A−1
h ξh

∥∥
Lp×Lq ≤ C ‖ξh‖Lq×Lr .

Together with a Sobolev’s embedding, a direct
consequence of Lemma 4 is the continuity of the
map

Xh ↪→ L4(Ωh)× L2(Ωh)
A−3

h−→ L∞(Ωh)× L∞(Ωh) .

Together with the reformulation of (3) as

yh = A−1
h Λh(t)∂tyh −A−1

h Λh(t)Fh(t) , (5)

we exchange integrability for time derivatives.
Denoting the discrete error by eh(t), the maxi-
mum norm is bounded by

‖eh(t)‖L∞×L∞ ≤ C
3∑

j=1

∥∥∂jt eh(t)
∥∥
Xh

+ Chk .

In the second step, we use energy techniques
to bound the time derivatives of the error by
further defects and the discrete initial errors

∥∥∂jt eh(0)
∥∥
Xh
, j = 1, 2, 3 .

An appropriately chosen initial value yields the
desired order of convergence.

With the implicit Euler scheme given in the
form (4), we derive analogously to (5) a repre-
sentation for the fully discrete scheme. This al-
lows us to mimic the proof of the semi discretiza-
tion with some calculus for discrete derivatives
and obtain the assertion of Theorem 3.
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