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Computation of resonances in locally perturbed periodic quantum systems
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Abstract

We introduce a new numerical method to com-
pute resonances induced by localized defects in
crystals. This method solves an integral equa-
tion in the defect zone to compute analytic con-
tinuations of resolvents. Such an approach en-
ables one to express the resonance in terms of
a localized, compact-supported function. The
kernel of the integral equation is the Green func-
tion of the undefective region, which is extended
by a complex deformation of the Brillouin zone,
thereby generalizing in reciprocal space the con-
cept of complex coordinate transformations.
Keywords: Resonances, Green function, defect
in a solid, complex scaling.

1 Introduction

We consider a one-body (possibly mean-field)
HamiltonianH, describing for instance a molecule
or a defect in a solid. The motivation and the
expected applications come from mean-field mod-
els such as time-dependent density functional
theory (TDDFT). Knowledge of the resolvent
R(z) of the Hamiltonian close to the real axis is
of interest to calculate the density of states, or
for time-dependent response properties for in-
stance. When the Hamiltonian is a small per-
turbation of a reference Hamiltonian that has
both bound and continuous states at the same
energy E , the coupling between these states
typically results in a bump of R at E. This cor-
responds to a resonance, which can be formally
defined as a pole in the analytic continuation of
the resolvent of the system from the upper com-
plex plane into the lower, through the essential
spectrum of H. This extension of the resolvent
makes sense only if we consider R(z) applied on
localized functions, which we will always do.

However, the truncation of H to a finite re-
gion of space will discretize the energy spec-

trum, not allowing for this extension. This is re-
lated to qualitative differences in wave propaga-
tion described by the full and truncated Hamil-
tonians. Quantities on the real axis can be ob-
tained by approximating R(ω) by R(ω+ iη) for
some finite artificial dissipation η > 0, but it
does not allow to reach the resonances below
the real axis.

We propose a method to express the contin-
uation of resolvent on and below the real spec-
trum for Hamiltonians of the form H = H0+V ,
where H0 is periodic on an infinite domain, and
V is localized.

2 Method

We reformulate the problem as an integral equa-
tion posed in the region of the defect, similar to
the Lippman-Schwinger method used in scatter-
ing problems. It allows to write the resolvent as
R(z) = R0(z)(1−V R0(z))

−1. V R0 being local-
ized, the essential of the work consists in com-
puting R0, the resolvent of the periodic part H0

of the Hamiltonian, possibly extended the lower
complex plane of energies z. Resonances can
then be found with a Newton method applied
to the determinant of 1− V R0(z).

The resolvent for a crystal Hamiltonian can
be expressed as an integral on k over the Bril-
louin zone, which we deform using a multi-dimensional
generalization of the Cauchy integral formula.
We choose the deformation function ki : k 7→
k + iki(k) so that the singularities of the inte-
grand get pushed down into the lower complex
plane for z, extending the domain of validity of
the integral formula below the essential spec-
trum. An analogy can be drawn with the com-
plex scaling method, which is a deformation in
the real space rather than the reciprocal space.

This new method is based on ideas that have
been used for theoretical studies [1–3] and re-
cently been used as a numerical method in 1D
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scattering problems [4]. The resulting scheme
only requires unit cell computations.

3 Resolvent for a graphene lattice

We apply our method on a graphene tight-binding
model (discrete Schrödinger operator). We will
first compute the resolvent of the unperturbed
Hamiltonian H0 and extend it below the real
axis.

The Bloch-Floquet transform of H0 is a 2×
2 complex matrix Hk. We plot Figure 1 the
eigenvalues εnk of this matrix over the Brillouin
zone B.

At a given energy z, the points k of the Bril-
louin zone at which the εnk are equal to z will
cause a singularity, since the integral is:

R0(R,R
′; z) =

1

|B|

∫

B
eik·(R−R′)

N∑

n=1

|unk⟩⟨unk|
z − εnk

dk.

Using a generalization of the Cauchy integral
theorem, we deform the integration path by adding
an imaginary part iki(k) to k around those points.
Choosing ki in the opposite direction to the gra-
dient of the eigenvalue, we ensure that points z
at which the integrand of the resolvent is singu-
lar are pushed downwards the real axis at first
order. The deformation ki over the Brillouin
zone is shown Figure 1.
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Figure 1: Dispersion relation ε(k) of the
graphene, and example of deformation ki at
z = 2 over the renormalized Brillouin zone.

This provides an extension of R0 below the
real axis as shown Figure 2.
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Figure 2: Imaginary part of the trace per unit
cell of the resolvent. The integral is approxi-
mated by a Riemann sum of N = 13 terms.

4 Perturbation of the lattice with an adatom

We now add a single adatom on the lattice,
linked to one site of the lattice with hopping con-
stant ϵ, and with an energy E. We use the R0

computed as above to look for the zeros of the
determinant of (1−V R0(z)) (see Figure 3) with
a Newton descent. These zeros are resonances
of the system. We show Figure 4 the resonant
state of the system ψ = R0(zres)ϕ, where ϕ is
the localized state associated to the eigenvalue
0 for (1− V R0(zres)).
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Figure 3: Log10 modulus of the smallest sin-
gular value of I − V R0. One pole appears at
2.1− 8.6e−2i.
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Figure 4: Resonant state associated to the res-
onance 2.1 − 8.6e−2i. The size of the dots is
proportional to the modulus of the state, the
color represents the phase.
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