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Abstract

The simulation of time-harmonic electromagnetic
waves requires a matrix inversion whose cost,

especially in three-dimensional cases, increases

quickly with the size of the computational do-

main. This is a major issue regarding memory

consumption. Iterative Trefftz methods [3| can

overcome this problem when resorting to a GM-

RES type solver [2|. They can simulate electro-

magnetic waves in large domains by avoiding the

storage of the LU factorization of the matrix.
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1 Maxwell problem

The studied adimensional Maxwell problem is

VxH = kE (1)
VxE = —ikH, on (,

where Q C R3, k is the wavenumber, E and
H are respectively the three-dimensional electric
and magnetic fields. We impose an impedance
boundary condition, see (3), on the boundary of
the domain, denoted by 0.

The domain €2 is meshed into a set of ele-
ments 7. It is also decomposed into a set of in-
terior faces F;,; and a set of exterior faces Feyt.
We define in each element T € T the electro-
magnetic field E7 := (ET,H) whose tangen-
tial electric and magnetic traces are defined as

#ET = (np xET) x ny and vZH” = np x HT,
with np the outward unit normal to 7.

2 Ultra-Weak Variational Formulation

Cessenat and Després developed in [1] the Ultra-
Weak Variational Formulation (UWVF) method
based on incoming and outgoing trace operators
respectively defined as following

VEET = yET +4THT,

ET _ ET_ THT (2)
Vout = N Tx .

The boundary condition can be written as

YEET = RyLET +f  on 0QNaT,  (3)

with f € £2(09) a tangential field and R the
reflexion coefficient.

A Trefftz method is defined by a Trefftz space
X7 and an ultra-weak energy conservation prop-
erty. The Trefftz space is made of local solutions
of (1) which are taken as analytical [3| plane
waves [4] in our work. The energy property is
given by

Theorem 1 For allE € X7 and E' € X
Z / ’YoutET ’youtE/T = Z / fY'm sznE/T'
TeT TeT

Hence, the UWVF is Find E € Xp such that

a(E,E') = ((E) VE € Xrp, (4)
where
a(E,E) =) (d"(E,E) - b (E,E)), (5a)
TeT
TEE) = | BT ET, (5D)
or
VI (E,E) = / VLET AR, (5¢)
or
Z/ TE/T (5d)
Ter aTmaQ

The numerical flux ] E7 ensures the consis-
tency of the method. It imposes the continuity
on interior faces and the impedance boundary
condition (3) on exterior faces

T - K EX on T NOK € Fiu,
o RyI BT on 0QN AT € Fou.

3 Iterative Trefftz method

Problem (4) is written into the matricial form

(M +N)X = F, (6)
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where M is the matrix associated to (5b), N is
the matrix associated to (5c) and F' is the vector
associated to (5d). Classically, (6) is solved by
the Cessenat and Després fixed point algorithm

X" = MTINX"+F, XY=0, (7)

which converges since M !N is contractant, see
Fig. 1 and [1]. However, eigenvalues close to the
unit circle tend to slow down the convergence.
A GMRES solver [2] performs better but still
has difficulties to deal with small eigenvalues (in
red in Fig. 1). Consequently, a new global pre-
conditioner has been developed to accelerate the
convergence of the iterative process, see Fig. 1.

Figure 1: Cessenat and Després preconditioner
(left) and global preconditioner (right).

Another major issue of UWVF method is
related to rounding errors. The matrix M 1N
is ill-conditioned since the plane waves Galerkin

basis functions are numerically linearly-dependant.

We present a new basis reduction inspired from
[4] improving the local conditioning. Indeed,
when considering 196 plane waves for a domain
with size A and a mesh of size h = %, the sparse
solver MUMPS can even not invert the matrix
without reduction due to a poor conditioning.
When lunching the GMRES solver, the improve-
ment when using reduction is clear, see Fig. 2.
It leads to a robust iterative method and to a
computational cost reduction.

4 Numerical results

In the presentation, we will focus on the memory
cost, used to compute the numerical solution of
(1), for different numerical methods when the
domain size increases with respect to the wave-
length A, see Fig. 3. Namely, we will compare
a Low and High Order Nédélec Finite Elements
method, a LU Trefftz method and a GMRES
Trefftz method using Cessenat and Després de-
composition. These numerical results clearly
show the potential of such iterative method.
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Figure 2: Conditioning gain when using reduc-
tion in GMRES solver for A =1 and h = 0.25.
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Figure 3: Memory cost for solving (1) for differ-
ent methods with 1% accuracy error.
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