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Abstract

Layered structures are highly dependant on the
material and bonding between each solid waveg-
uide. In this work we will analyse a two lay-
ered waveguide with a delamination in the cen-
tre and soft (imperfect) bonding either side of
the centre. The lower layer of the waveguide
is assumed to be significantly denser than the
upper layer, leading to a system of Boussinesq-
Klein-Gordon (BKG) and Boussinesq equations.
Direct numerical modelling is difficult and so
we will use a semi-analytical approach consist-
ing of several matched asymptotic multiple-scale
expansions, which leads to Ostrovsky equations
in soft bonded regions and Korteweg-de Vries
equations in the delaminated region. We will
also discuss how the dispersion relation is used
to determine the wave speed and hence classify
the length of the delamination, in addition to
changes in the amplitude of the wave packet.
These results can provide a tool to control the
integrity of layered structures.
Keywords: Boussinesq-Klein-Gordon equation;
multiple-scales expansions; Ostrovsky wave packet.

1 Introduction

The discovery of solitons as localised stable struc-
tures [1] in combination with theoretical results
of the propagation of long longitudinal bulk soli-
tary waves in elastic waveguides [2] has provided
a gateway to explore how the quality of bonding
effects the integrity of a layered structure and
recent experiment have confirmed the existence
of solitons in layered waveguides [3].

In this work we will investigate a two layered
bar with a initial delaminated region followed
by delamination in the centre of soft bonding,
where the material between the layers is dis-
tinctly different. The strain waves are described
by Boussinesq-Klein-Gordon (BKG) equations
in bonded regions and Boussinesq equations in
the delaminated regions. A weakly nonlinear
solution will be used to model the propagating
waves in each section. Then we will compare a

semi analytical solution, that makes use of the
weakly-nonlinear solution, and a direct numeri-
cal solution.

Long waves propagate within these waveg-
uides and the initial solitary wave undergoes a
nonlinear steepening process, producing a wave
packet consisting of a long wave envelope, through
which shorter, faster solitary-like waves propa-
gate [4]. This wave packet emerges as a solution
of the Ostrovsky equation

(ut + αuux + βuxxx)x = γu. (1)

The Ostrovsky equation was originally applied
in the context of shallow internal and surface
water waves as the effect of the Earth’s rotation
was considered [5]. The envelope measures the
amplitude, and the ratio of the carrier wave-
length. The scattering of an Ostrovsky wave
packet is present in the "soft" bonded region and
generated from a solitary wave and the evolution
of wave packets generated by an initial pulse has
been thoroughly examined [6].

2 Weakly Nonlinear Solution

Consider the scattering of a long longitudinal
strain solitary wave in a two layered bar with
delamination in the centre as show in Figure 1.

Figure 1: Schematic of the bi-layer with initial
small delaminated region followed by a delami-
nated region between two soft bonded regions.

The strain of the nonlinear wave propagating
within the upper waveguide layer can be mod-
elled by system of Boussinesq equations

f
(i)
tt − f (i)

xx = 2ε
(
−3

(
f (i)2

)
xx

+ f
(i)
ttxx

)
, (2)

Suggested members of the Scientific Committee:
Michael Weinstein & Daniel Apello



WAVES 2022, Palaiseau, France 2

where i = 1, 3, and BKG equations
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)
,

(3)

where j = 2, 4, with continuity conditions on
the interface between the sections.

Substituting multiple-scale expansions into
(3) and utilising space averaging yields the fol-
lowing Ostrovsky equations

(T
(j)
X − 6T (j)T

(j)
ξ + T

(j)
ξξξ)ξ = γT (j), (4)

(R
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η +R(j)
ηηη)η = γR(j), (5)

where T
(j)
X and R

(j)
X as the leading order trans-

mitted and reflected waves respectively.
Similarly for (2) we get

T
(i)
X − 6T (i)T

(i)
ξ + T

(i)
ξξξ = 0, (6)

R
(i)
X − 6R(i)R(i)

η +R(i)
ηηη = 0, (7)

which are KdV equations, describing the leading
order transmitted waves T (i)

X and reflected waves
R

(i)
X .

3 Numerical Methods and Results

Numerically solving (2) - (3) directly using the
finite difference method presented in [7] and com-
paring to the semi-analytical method gives the
results outlined in Figure 2
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Figure 2: Longitudinal strain waves in a two lay-
ered waveguide with finite delamination for di-
rect numerical simulations (blue, solid line) and
semi-analytical solution (red, dashed line).

In Figure 2 initially, when the wave is in
the delaminated region, the wave behaviour is
soliton-like. Once the wave enters the first soft

bonded region, the wave then evolves in an Os-
trovsky wave. Once the wave re-enters the de-
laminated region for a sufficient duration, multi-
ple solitons are generated behind a leading soli-
ton. Then, when the wave re-enters a soft bonded
region, we see at t = 2400 the leading wave
evolves into an Ostrovsky wave packet.

The wave speed can be calculated from the
simulation in Figure 2 as the waveguide length
and time of propagation is known. The numer-
ical wave speed can be compared to the wave
speed obtained using the dispersion relation, which
as suggested in [6] should output similar results
for the speed. We see they are in good agree-
ment.

Also, the delamination length can be varied
to provide a further insight into the structure’s
integrity by analysing the amplitude change and
phase shift of the leading waves. Numerical re-
sults of this will be provided at the talk.
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