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Abstract

Boundary feedback stabilization Jordan–Moore–
Gibson–Thompson (JMGT) equation in the non-
linear and critical case is considered. The bound-
ary feedback is supported only on a portion of
the boundary, while its remaining is left free
(available to control actions) and fail to satisfy
Lopatinski condition (unlike Dirichlet boundary
conditions) making the analysis of uniform sta-
bilization from the boundary to become very
subtle and to require careful geometric consid-
erations.
Keywords: boundary feedback stabilization, non-
linear acoustics , JMGT–equation

1 Introduction

The JMGT equation is a third–order (in time)
semilinear PDE, a established model for non-
linear acoustics (NLA) which has been recently
widely studied [1, 2, 3, 4, 5, 6, 9]. Here, critical
refers to the usual case where media–damping
effects are non–existent or difficult to measure.

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain
with smooth boundary Γ := ∂Ω and consider
the semilinear JMGT–equation

τuttt + (α− 2ku)utt

−c2∆u− (δ + τc2)∆ut = 2ku2
t ,

(1)

where c, δ, k > 0 are constants representing the
speed and diffusivity of sound and a nonlinear-
ity parameter, respectively, while the function
α : Ω→ R+ accounts for natural frictional. The
parameter τ > 0 accounts for thermal time re-
laxation.

For the analysis of long–time dynamics the
function

γ : Ω→ R, γ(x) ≡ α(x)− τc2

b
(2)

plays a central role. In fact, for zero Neumann
or Dirichlet data, if γ(x) > γ0 > 0 a.e. in Ω both
linear (k = 0) and nonlinear dynamics are uni-
form exponentially stable [8]. If γ < 0, chaotic
solutions might appear [7] and if γ ≡ 0 then the

energy is conserved. What mechanisms could
ensure stability when γ(x) > 0 (critical).

In this work we study the stabilizability prop-
erty of the following boundary conditions

λ∂νu+ κ0(x)u = 0 on Σ0

∂νu+ κ1(x)ut = 0 on Σ1
(3)

with Γ0,Γ1 ⊂ Γ relatively open, Γ0 6= ∅, Γ0 ∪
Γ1 = Γ,Γ0 ∩ Γ1 = ∅, λ > 0, κ0 ∈ L∞(Γ0) and
κ1 ∈ L∞(Γ1), κ1(x) ≥ κ1 > 0, κ0 > 0 a.e.

2 Functional Analytic Setting

We consider the system comprised of (1), bound-
ary conditions (3) and initial conditions

u(0, ·) = u0, ut(0, ·) = u1, utt(0, ·) = u2 (4)
with regularity to be specified in what follows.

Let A be extension (by duality) of the neg-
ative Laplacian with domain

D(A) =

{
ξ ∈ H2(Ω); ∂νξ|Γ1 = 0,

[∂νξ + κ0ξ]Γ0
] = 0

} (5)

and let phase space H given by
H := D(A1/2)×D(A1/2)× L2(Ω) (6)

with
‖u‖2D(A1/2)

:= ‖∇u‖22+

∫

Γ0

κ0|u|2dΓ0 ∼ ‖u‖2H1(Ω)

The u–problem (k = 1/2) can be written as
τuttt + αutt + c2Au

+bAut + c2AN(κ1N
∗Aut)

+bAN(κ1N
∗Autt) = u2

t + uutt

(7)

which we transform into the first order Cauchy–
problem{

Φt = AΦ + F(Φ)

Φ(0) = Φ0 = (u0, u1, u2)>,
(8)

in the variable Φ = (u, ut, utt)
> with F(Φ)> ≡

(0, 0, τ−1(u2
t +uutt)) and A with action (on ~ξ =

(ξ1, ξ2, ξ3)>) and domain respectively

A~ξ :=

(
ξ2, ξ3,−

c2

τ
Aξ1

−c
2

τ
AN(κ1N

∗A)ξ2 −
b

τ
Aξ2

− b
τ
AN(κ1N

∗A)ξ3 −
α

τ
ξ3

)>
(9)
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D(A)=

{
~ξ ∈

[
H2(Ω)

]2 ×H1(Ω);

[∂νξ1+κ0ξ1]Γ0
=[∂νξ2+κ0ξ2]Γ0

=0

[∂νξ1+κ1ξ2]Γ1
=[∂νξ2+κ1ξ3]Γ1

=0
}

(10)

In order to treat the nonlinear problem we
consider a second phase space and its norm

H1 =

{
~ξ∈H; ∆ξ1 ∈ L2(Ω); [λ∂νξ1+κ0ξ1]Γ0

=0;

[∂νξ1+κ1ξ2]Γ1
=0
} (11)

‖~ξ‖2H1
= ‖~ξ‖2H + ‖∆ξ1‖22 + ‖∂νξ1‖2H1/2(Γ)

3 Main Results

Assumption 1 The boundary Γ0 is star–shaped
and convex. In addition, there exists a convex
level set function which defines Γ0. See [3, 10].

Theorem 1 (Two level uniform stability)
Let Assumption 1 be in force and γ(x) > 0.
Then the operator A generates uniformly expo-
nentially stable semigroups on both H and H1.

Given T > 0, we say that Φ(t) is a mild so-
lution for the system (1), (3) and (4) provided
Φ ∈ C([0, T ],H1) and Φ is given by the varia-
tion of parameter (VofP) formula correspoding
to the solution of (8) with underlying semigroup
being the one generated by A in H1.

Define Hρ := {Φ ∈ H1; ‖Φ‖H < ρ} (ρ > 0).

Theorem 2 (Global Solutions) Let Assump-
tion 1 be in force. Then, there exists ρ > 0 suf-
ficiently small (depending on the parametrs in
the equation) such that, given any Φ0 ∈ Hρ the
VofP formula defines a continuous H1–valued
mild solution for the system (1), (3) and (4).
Moreover, for such ρ > 0, there exists R =
R(‖Φ0‖H1) such that all trajectories starting in
BHρ(0, R)remain in BHρ(0, R1) for all t > 0 and
R1, R are such that R1 > R.

Theorem 3 (Nonlinear Uniform Stability)
Let Assumption 1 be in force and assume γ ∈
L∞(Ω) and γ(x) > 0. Then, there exists ρ > 0
sufficiently small and M(ρ), ω > 0 such that if
Φ0 ∈ Hρ then

‖Φ(t)‖H1 6M(ρ)e−ωt‖Φ0‖H1 , t > 0 (12)

where Φ is the mild solution given by Theorem
2.
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