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Abstract

Boundary feedback stabilization Jordan—-Moore—
Gibson-Thompson (JMGT) equation in the non-
linear and critical case is considered. The bound-
ary feedback is supported only on a portion of
the boundary, while its remaining is left free
(available to control actions) and fail to satisfy
Lopatinski condition (unlike Dirichlet boundary
conditions) making the analysis of uniform sta-
bilization from the boundary to become very
subtle and to require careful geometric consid-
erations.
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1 Introduction

The JMGT equation is a third-order (in time)
semilinear PDE, a established model for non-
linear acoustics (NLA) which has been recently
widely studied [1, 2, 3, 4, 5, 6, 9]. Here, critical
refers to the usual case where media—damping
effects are non—existent or difficult to measure.

Let Q € R? (d = 2,3) be a bounded domain
with smooth boundary I' := 92 and consider
the semilinear JMGT-equation

T Uttt =+ <CM — QkU)Utt 1
—c2Au — (8 + ¢ Auy = 2ku?, @)

where ¢, d, k > 0 are constants representing the
speed and diffusivity of sound and a nonlinear-
ity parameter, respectively, while the function
a : Q — R* accounts for natural frictional. The
parameter 7 > 0 accounts for thermal time re-
laxation.

For the analysis of long—time dynamics the
function 9

v:Q =R, v(z) = a(z) — % (2)

plays a central role. In fact, for zero Neumann
or Dirichlet data, if y(x) > 7o > 0 a.e. in {2 both
linear (k = 0) and nonlinear dynamics are uni-
form exponentially stable [8]. If v < 0, chaotic
solutions might appear [7] and if 4 = 0 then the

energy is conserved. What mechanisms could
ensure stability when y(z) > 0 (critical).

In this work we study the stabilizability prop-

erty of the following boundary conditions

Adyu + Ko(x)u = 0 on Xy 5

Oyu+ k1 (x)ug =0 on X 3)

with T'g,T'y C T relatively open, I'g # 0, Tg U

i =0,TgNTy =0, X >0, kg € L=®(Ty) and
k1 € L®(T), k1(z) > k1 > 0,K0 > 0 a.e.

2 Functional Analytic Setting

We consider the system comprised of (1), bound-
ary conditions (3) and initial conditions
w(0,-) = ug, ue (0, ) = ug, uu(0,:) =uz  (4)
with regularity to be specified in what follows.
Let A be extension (by duality) of the neg-
ative Laplacian with d(z)main
D(A) _ {é €H (Q>7 81/€‘F1 - O,
[00€ + Ko€]p,] = 0}
and let phase space H given by
H := D(AY?) x D(AY?) x L2(Q)  (6)

()

with
Iy = IVl wolulay ~
The u—problem (k = 1/2) can be written as
Tugy + ouy + 2 Au
+bAuy + AN (k1 N* Auy) (7)
+bAN (ki N* Auy) = uf + ungy

which we transform into the first order Cauchy—
problem

O, = AP + F(P)

®(0) = Py = (uo,ul,uQ)T,
in the variable ® = (u, us, ug) ' with F(®) T
(0,0, 77 (u? +uuy)) and A with action (on E
(€1,&2,&)T) and domain 1 spectivecly
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{€e @) x H'(@);
D(A)=8,¢ +roé1]r,=[0v€2+Koalp, =0 (10)
0,61+ K1 &a]p, =[0v€a+FK1&3]p, =0}

In order to treat the nonlinear problem we
consider a second phase space and its norm

{€em: Ag € LH(Q); A& +roip,=0;

H, = (11)

[81151 +"51§2]F1:0}

€12, = I€13 + 1203 + 1906112200y

3 Main Results

Assumption 1 The boundary Iy is star—shaped
and convexr. In addition, there exists a convex
level set function which defines T'y. See [3, 10].

Theorem 1 (Two level uniform stability)
Let Assumption 1 be in force and v(z) = 0.
Then the operator A generates uniformly expo-
nentially stable semigroups on both H and H;.

Given T' > 0, we say that ®(¢) is a mild so-
lution for the system (1), (3) and (4) provided
¢ € C(]0,T],H;) and @ is given by the varia-
tion of parameter (VofP) formula correspoding
to the solution of (8) with underlying semigroup
being the one generated by A in Hj.

Define H? := {® € Hy; ||®||m < p} (p > 0).

Theorem 2 (Global Solutions) Let Assump-
tion 1 be in force. Then, there exists p > 0 suf-
ficiently small (depending on the parametrs in
the equation) such that, given any ®y € HP the
VofP formula defines a continuous Hy—valued
mild solution for the system (1), (3) and (4).
Moreover, for such p > 0, there exists R =
R(||®olm, ) such that all trajectories starting in
Bur (0, R)remain in By (0, Ry) for allt > 0 and
R1, R are such that R; > R.

Theorem 3 (Nonlinear Uniform Stability)
Let Assumption 1 be in force and assume v €
L>(Q) and y(x) = 0. Then, there exists p > 0
sufficiently small and M (p),w > 0 such that if
®y € H” then

12(t) [, < M(p)e™|@ollm,, =0 (12)

where ® is the mild solution given by Theorem
2.
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