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Abstract

A spatial evolution by nonlinear wave-wave in-
teraction was studied using the 2D FN-NWT
technique which was based on boundary element
method with Rankine panels. The present re-
sults were compared with previous experimen-
tal data for spatial evolution of Bi-chromatic
waves, and the difference between fully nonlin-
ear and linear calculation results was investi-
gated. The nonlinear spatial evolution of trav-
eling waves by wave-wave interaction was well
realized through the fully nonlinear calculation,
and it was in good agreement with the exper-
imental results. The farther the wave propa-
gated, the greater the difference between lin-
ear and nonlinear calculations. The spatial evo-
lution of irregular waves was numerically ana-
lyzed.
Keywords: Bi-chromatic waves, Spatial evolu-
tion, Fully nonlinear numerical wave tank

1 Introduction

In general, a rogue wave is defined as a wave
which height is greater than two times the sig-
nificant wave height defined as the mean of the
highest one third of waves occurring over a cer-
tain time period [1]. There are several reasons
for the occurrence of sudden huge waves. One
typical reason is that the extreme wave may oc-
cur by nonlinear interactions from various small
waves as wave group. To simulate a spatial
evolution of group waves, two-dimensional fully
nonlinear potential flow numerical wave tank
(2D-FN-NWT) technique was used, and this nu-
merical model is based on boundary element
method with constant Rankine panels. In ad-
dition, the mixed Eulerian-Lagrangian (MEL)
method was applied for updating nonlinear free
surface water particles in the time domain anal-
ysis. Bi-chromatic waves and irregular waves
were numerically simulated, and linear and fully
nonlinear calculation results of wave evolution
by wave-wave interaction were compared.

2 Mathematical formulation

The computational domain is filled with incom-
pressible, irrotational, and inviscid fluid in the
2D FN-NWT, so the governing equation can
be Laplace equation using velocity potential(ϕ)
and continuity equation satisfied in the fluid do-
main.

∇2ϕ = 0, (1)

αϕi =

∫∫

Ω
(Gij

∂ϕj

∂n
− ϕj

∂Gij

∂n
)ds (2)

Gij = − 1

2π
lnRij (3)

Rij =
√

(xi − xj)2 + (zi − zj)2 (4)

where α is a solid angle and it was set to 0.5
on the boundary of computational domain. ϕi

and ϕj mean the velocity potential at the source
(xi, zi) and field (xj , zj) points, respectively. For
the free surface boundary condition, the full La-
grangian approach of MEL method, which ex-
presses nodes that follow the motion of water
particles on the free surface with velocity v⃗ and
δ
δt =

∂
∂t + v⃗ •∇, was applied (Eqs. (5) and (6)).
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1

2
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where g is gravitational acceleration, ρ is water
density. An artificial damping zone was applied
on the free surface near the end wall of fluid do-
main to prevent reflected waves due to the rigid
end wall. The wave particle velocity profile was
used as the incident wave boundary condition.
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)

(7)

where A, ω, k, h and ε denote wave amplitude,
wave frequency, wave number, water depth, and
random phase, respectively. Also, the imperme-
able boundary condition is applied to bottom
and end wall.
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3 Results and Discussion

Figure 1 compares the time series of traveling
bi-chromatic wave elevations at two measure-
ment points. Wave periods are set to T1=1.9s,
T2=2.1s, and wave amplitude is A1=A2=0.08m.
In the linear calculation, group waveforms gen-
erated from bi-chromatic waves were maintained
and propagated. However, in the fully nonlinear
calculation, the wave energy was concentrated
within the group wave envelope as the generated
group wave progresses. In addition, the differ-
ence between the phase angles of the linear re-
sult and the nonlinear result gradually increases
as the wave propagates. The energy concentra-
tion and phase angle changes within the wave
envelop, which can be seen in the nonlinear cal-
culation results, were in good agreement with
the previous experimental results [2].

Figure 1: Comparison of time series of bi-
chromatic waves (T1=1.9s and T2=2.1s)

Figure 2 compares the time series of irreg-
ular wave propagation measured at three mea-
surement points in linear and fully nonlinear cal-
culations. To generated irregular waves, JON-
SWAP spectrum was applied to incident wave
boundary and a random phase was set to a range
between 0 to 2π.
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where the peak frequency was set to ωp= 3.14rad/s,
the significant wave height was set to Hs=0.1336m,
the peak enhancement factor was set to γ=3.3.
σ=0.07 for ω ≤ ωp, and σ=0.09 for ω > ωp, re-
spectively. In the linear calculation, the shape of
wave propagation was similar to the fully nonlin-
ear result in the vicinity of the incident bound-
ary (Fig. 2(a)). However, as the waves prop-
agate, the linear results continue to maintain
the initially formed waveform, but in the fully

nonlinear calculation, wave energy was concen-
trated at a specific point similar to Figure 1,
and the difference of phase angle between the
two calculation results gradually increases.

Figure 2: Time series of irregular waves at dif-
ferent measurement points

4 Conclusions

The spatial evolution of wave groups by wave–wave
interactions was simulated numerically using the
2D-FN-NWT technique. The fully nonlinear cal-
culation results were in good agreement with the
experimental data on the phase angle change
and wave energy concentration within the wave
envelope. The spatial evolution of irregular waves
was numerically analyzed using the verified nu-
merical model. As the wave propagated, the lin-
ear results kept the initially formed wave form,
but in the fully nonlinear calculation, the wave
energy was concentrated at a specific point and
the phase angle difference between the two cal-
culation results gradually increased.
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