
WAVES 2022, Palaiseau, France 1

Stable approximation of Helmholtz solutions with evanescent plane waves
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Abstract
Helmholtz solutions are known to be well ap-
proximated by a suitable finite superposition of
(propagative) plane waves, leading to success-
ful Trefftz methods. Yet, when too many plane
waves are used, the computation of the approx-
imation is known to be numerically unstable.
This comes from the presence of (exponentially)
large coefficients in the expansion.

We show that any Helmholtz solution on a
disk can be exactly represented by a continu-
ous superposition of plane waves, provided that
evanescent ones (with a complex-valued propa-
gation direction) are included. This generalizes
the standard Herglotz representation. Besides,
the operator mapping the Helmholtz solution to
its extended Herglotz density is invertible and
continuous. While the result holds at the con-
tinuous level, such a property paves the way
for accurate discrete approximation expansions
that are moreover stable.
Keywords: Helmholtz equation, Evanescent
plane waves, Stable approximation

1 Introduction
We consider the numerical approximation of so-
lutions u of the homogeneous Helmholtz equa-
tion −∆u − κ2u = 0 with wavenumber κ > 0.
As a model problem, the domain of propagation
is the unit disk B1.

A well-studied way to represent Helmholtz
solutions is to approximate them with linear
combinations of propagative plane waves (PPW)
x 7→ eıκd·x, for different propagation directions
d(ϕ) := (cosϕ, sinϕ) ∈ R2 parametrized by the
angle ϕ ∈ [0, 2π). The main reason is that PPW
offer better accuracy for less degrees of freedom
in comparison to polynomial spaces and their
simple exponential expressions allow very cheap
implementations, in comparison to other partic-
ular solutions [3]. In 2D, isotropic approxima-
tions are obtained by using equispaced angles:
for some M ∈ N, ϕm := 2πm

M , 1 ≤ m ≤ M .

Explicit hp-estimates in suitable Sobolev semi-
norms are available for general domains ensur-
ing exponential convergence (with respect to
the number of PPW used) of the approximation
of homogeneous Helmholtz solutions [3, §3.2].
Therefore, at least in principle, PPW are well-
suited for Trefftz approximations.

2 Propagative plane waves are unstable
The computation of PPW expansions is known
to be numerically unstable when increasing the
size of the approximation space [3, §4.3] and
this is perhaps the main reason that prevented
a widespread use of plane-wave based Trefftz
schemes. The issue is often understood as an
effect of the ill-conditioning of the underlying
linear system, which necessarily arises from the
almost linear dependence of propagative plane
waves with similar directions of propagation.
Some recent advances [1] in the general set-
ting of Frame Theory have demonstrated that
ill-conditioning arising from such redundancy
can be successfully overcome using regulariza-
tion techniques, provided (this is the key point)
there exist accurate approximations in the form
of expansions with bounded coefficients. It turns
out that PPW approximations with bounded
coefficients do not always exist.

To explain this, let us introduce the circular
waves bp(x) := βpJp(κr)e

ıpθ, for x = (r, θ) ∈ B1

and p ∈ Z, which are the bounded solutions
that are separable in polar coordinates. The
normalization coefficients βp, computed e.g. for
a H1(B1)-norm, grow super-exponentially with
|p| and allow to make the family {bp}p a Hilbert
basis for the space of Helmholtz solutions in the
unit disk. It can be shown that an approxima-
tion b̃p of bp consisting in a finite sum of PPW
with a vector of coefficients denoted µ, that is
accurate, namely ‖bp − b̃p‖ ≤ η for some tol-
erance 1 ≥ η > 0, has necessarily coefficients
that satisfy ‖µ‖`1 ≥ (1 − η)βp. Owing to the
super-exponential growth of βp with |p|, this is
a clear example of how accuracy and stability
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properties (in the sense of bounded coefficients)
are sometimes mutually exclusive.

This issue can be understood (and proved)
from the Jacobi–Anger identity: for any x ∈ B1

and ϕ ∈ [0, 2π),

eıκd(ϕ)·x =
∑

p∈Z

(
ıpe−ıpϕβ−1

p

)
bp(x). (1)

The modulus of the coefficients in the above
modal expansion as a function of p is reported
in Figure 1 (case ζ = 0). This quantity, which
is independent of ϕ, decays super-exponentially
away from the ‘propagative’ modes |p| ≤ κ. The
direct implication is that PPW superpositions
need cancellation (i.e. subtraction of values nu-
merically close to each other) and large coeffi-
cients to approximate Helmholtz solutions with
a high-frequency modal content (large |p|).
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Figure 1: Modulus of the coefficients of the
modal expansion in the basis {bp}p∈Z of vari-
ous plane waves for κ = 16.

3 Evanescent plane waves
To obtain accurate expansions with bounded
coefficients, we enrich the PPW set with some
evanescent plane waves (EPW), a technique al-
ready used in the Wave Based Method [3]. EPW
are characterized by complex-valued direction
vector d(ϕ, ζ) := (cos(ϕ+ıζ), sin(ϕ+ıζ)) ∈ C2,
where we introduced the evanescence parameter
ζ ∈ R. The Helmholtz equation is still satis-
fied since d · d = 1. The Jacobi–Anger expan-
sion (1) extends to complex d: for any x ∈ B1

and (ϕ, ζ) ∈ [0, 2π)× R,

eıκd(ϕ,ζ)·x =
∑

p∈Z

(
ıpe−ıpϕepζβ−1

p

)
bp(x). (2)

The modulus of the coefficients in the above
modal expansion are reported (with a conve-
nient normalization depending only on ζ) in Fig-
ure 1 as a function of p. We see that by tun-
ing the evanescence parameter ζ we are able to

shift the modal content of the plane waves to
higher frequency regimes. As a result, we ex-
pect the EPW to be able to capture well the
high-frequency modes of Helmholtz solutions.

The main theoretical result that highlights
the benefit of EPW is the following.
Theorem 1 Let w(ζ) := e−κ sinh |ζ|+|ζ|/4. For
any Helmholtz solution u in the unit disk there
exists a unique Herglotz density v that belongs
to a proper subspace of the w2-weighted L2-space
on [0, 2π]× R such that: for any x ∈ B1

u(x) =

∫ +∞

−∞

∫ 2π

0
v(ϕ, ζ)eıκd(ϕ,ζ)·x w2(ζ)dϕdζ.

Moreover, the operator that maps u to v is in-
vertible and continuous.
This integral representation (that uses EPW)
can be seen as a generalization of the classical
Herglotz representation (that uses only PPW).
While only very regular Helmholtz solutions ad-
mit a standard Herglotz representation (with
density in L2([0, 2π])), the generalized Herglotz
representation of Theorem 1 holds for any so-
lution. The price to pay for this result is the
need for a two-dimensional parameter domain
in place of a one-dimensional one. In view of
practical implementations, the difficulty is then
to construct discrete counterparts of such con-
tinuous representations. We propose a proce-
dure to construct suitable finite sets of EPW,
that are reasonable in size, using sampling strate-
gies in the parametric domain [2]. Numerical
evidence shows that the resulting discrete ex-
pansions are both controllably accurate and with
bounded coefficients, hence numerically stable.
The proof of Theorem 1 and more details can
be found in arXiv:2202.05658. The extension
to other geometries is challenging and ongoing.
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