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Abstract

We investigate the numerical simulation of com-
plex nonlinear optical processes in dispersive me-
dia. A mathematical model and numerical dis-
cretization techniques are developed. In par-
ticular we study higher order variational time
discretizations and the implementation of a per-
fectly matched layer within this framework. We
use a scheme which combines finite element tech-
niques with the concepts of collocation methods
yielding discrete continuously differentiable in
time solutions. We verify our techniques with
convergence tests. As a practical example we
investigate the generation of THz frequency ra-
diation in periodically poled crystals.
Keywords: nonlinear optics, absorbing bound-
ary conditions, variational time discretization

1 Introduction

Nonlinear optical phenomena form the basis of
a wide range of applications such as novel op-
tical sources and measurements or diagnostic
techniques. With growing technical complexity,
the reliability of models and algorithms, optimal
numerical performance and minization of costs
and time in computer simulations remain key
demands for investigations of nonlinear optical
phenomena. We develop efficient and accurate
methods for modelling complex phenomena in
nonlinear optics. For the discretization we use
variational space time methods. Within this
framework we focus on higher order variational
time discretizations. For these higher order time
discretizations we implement absorbing bound-
ary conditions based on perfectly matched lay-
ers.

2 Physical Model

Our model is motivated by the generation of
THz radiation in periodically poled nonlinear
crystals. THz radiation has a wide range of ap-

plications, e. g. medical imaging, biochemistry
or free electron lasers. We address the arising
physical problem with a dispersive and nonlin-
ear model for the propagation of electromag-
netic waves in the time domain. We transform
the equations and quantites by applying a time
transformation t̃ = c0t and omit the ·̃ from now
on. We use a Lorentz model for the dispersion
and include a second order instantaneous non-
linearity. In the Lorentz model the electric per-
mittivity and refractive index can be modeled
by the equation

n(ν)2 = n2
ω +

(n2
Ω−n2

ω)ν
2
t

ν2t −ν2+iΓ0ν
, (1)

where Γ0 is the damping coefficient and νt the
phonon frequency. From this we derive the aux-
iliary differential equation (ADE) for Lorentz
materials in the time domain (2a). We cou-
ple (2a) with the electromagnetic wave equation
which leads to

∂ttP + Γ0∂tP + ν2t P

− (n2
Ω − n2

ω)ν
2
t E = 0 , (2a)

−∆E + n2
ω∂ttE + (n2

Ω − n2
ω)ν

2
t E − ν2t P

− Γ0∂tP + χ(2)∂tt(|E|E) = 0. (2b)

In numerical simulations, wave propagation has
to be truncated to bounded regions. To this end
we apply the complex frequency shifted PML
which allows us to derive ADEs similar to the
Lorentz dispersion. This leads to a high level
of flexibility regarding the applications of dis-
cretization techniques. We approximate (2) by
a finite element method in space and time, along
the lines of [3]. We employ a higher order time
discretization by extending [1] to (2). The method
in [1] has shown to be superior over standard
continuous and discontinuous methods. It es-
tablishes a direct connection between the Galerkin
method for the time discretization and the clas-
sical collocation methods, thereby achieving the
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Figure 1: Example of a peridically poled crystal with period Λ. The pump pulse g(t) at frequencies
ω1, 2 enters the crystal on Γin. In the subsequent layers THz radiation is generated.
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Figure 2: Frequency spectrum of the pulse g(t) after it has passed 25 periods of the crystal (a) in the
0.1THz to 1THz region and (b) in the optical region from 100THz to 1000THz.

accuracy of the former with the reduced com-
putational costs of the latter. The time dis-
crete solutions are continuously differentiable by
construction. The linearization is done by a
damped version of Newton’s method, and the
arising linear systems are solved by a precondi-
tioned GMRES method.

3 Numerical investigations

We simulate THz generation in a periodically
poled crystal by two Gaussian shaped pump pulses
g(t) = exp

(
−2 log 2

(
t
τ

)2)
(cos(2πω1t)+cos(2πω2t))

separated in center frequency by the THz fre-
quency. We use a full width half maximum τ =
200 ns and frequencies ω1 = 291.56THz, ω2 =
291.26THz. The pulse is applied at the left-
hand side of the crystal by a Dirichlet bound-
ary condition and then propagates through the
domain until the PML is hit on the right-hand
side. The problem setting is sketched in Fig. 1.
For the implementation we use the finite ele-
ment toolbox deal.II [2] along with the Trilinos
library. The simulated results are presented in
Fig. 2. We see, besides the THz radiation gener-
ated by difference frequency mixing in Fig 2(a),
the harmonics in the optical domain in Fig. 2(b)
simultaneously generated by second harmonic
and sum-frequency generation.

4 Conclusion

We presented a mathematical model and finite
element time domain framework for accurate and
efficient simulation of phenomena in nonlinear
optics. The approach employed has the advan-
tage of a high flexibility with respect to physi-
cal models, simulation domains and order of ap-
proximation and accuracy. Although our imple-
mentation is highly efficient and the results are
promising, a further reduction of computational
costs is still needed.
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