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Abstract

We present the first parallel implementation of
the novel “Interpolated Factored Green Func-
tion” (IFGF) method introduced recently for the
accelerated evaluation of discrete integral oper-
ators arising in wave scattering and other areas
(Bauinger and Bruno, Jour. Computat. Phys.,
2021). On the basis of the hierarchical IFGF in-
terpolation strategy, the proposed (hybrid MPI-
OpenMP) parallel implementation results in a
highly efficient data communication, and it ex-
hibits in practice excellent parallel scaling up to
large numbers of cores, which is demonstrated
on the basis of numerical results for problems of
up to 4,096 wavelengths in electrical size, and
scaling tests spanning from 1 compute core to
all 1,680 cores available in the HPC cluster used.
Keywords: Wave Scattering, Integral Equa-
tions, High Performance Computing

1 Parallel IFGF Method

We present a hybrid MPI-OpenMP parallel im-
plementation of the novel “Interpolated Factored
Green Function” (IFGF) method for the accel-
erated evaluation of discrete integral operators
arising in wave scattering and other areas [1].
The proposed implementation demonstrates in
practice excellent parallel scaling up to large
numbers of cores essentially without any hard
limitations on the number of cores concurrently
employed in an efficient manner — even for small
problems — while preserving the linearithmic
complexity (O(N logN) computing cost) inher-
ent in the sequential IFGF algorithm. The IFGF
method accelerates the evaluation of discrete in-
tegral operators by relying on a certain factor-
ization of the Green function into two factors, a
“centered factor” that is incorporated easily as a
common factor in the calculation, and an “ana-
lytic factor” which enjoys a property of analyt-
icity up to and including infinity — and which
thus motivates the IFGF strategy, namely, eval-
uation of a given discrete integral operator by

means of a hierarchical interpolation approach
which relies on use of a large number of small
and independent interpolation procedures. In
particular, the IFGF approach does not utilize
acceleration elements commonly used by other
acceleration methods [2–7] such as the FFT (Fast
Fourier Transform), spherical harmonics expan-
sions, high-dimensional linear algebra factoriza-
tions, translation operators, equivalent sources,
or parabolic scaling.

The parallelization of other accelerated Green
function methods has been the subject of a sig-
nificant literature [8–12]. In contrast to these
approaches, the IFGF method admits an ele-
gant and highly efficient parallelization strategy
due to it’s algorithmic simplicity. This parallel
strategy is based on adequately partitioning the
interpolations performed on each level of the un-
derlying octree structure, which facilitates the
spatial decomposition of the surface discretiza-
tion points. As shown in [1], the number of
interpolations performed on each level is large
and approximately constant (as a function of
the octree level), thus admitting a large number
of independent tasks suitable for parallelization.
The decomposition and distribution of the inter-
polation data is based on a total order in the set
of spherical cone segments representing the in-
terpolation domains, which is an extension of a
domain decomposition based on a Morton curve
to the box-cone data structure inherent in the
IFGF approach. While the usage of space-filling
curves for the representation of octree structures
underlying the various acceleration methods is
not a novel concept [13–15], it requires some ad-
justments to be applicable to the present box-
cone structure of the IFGF method. In view
of its strong reliance on the IFGF’s box-cone
structure, the proposed parallelization strategy
is not applicable to other acceleration methods
such as the Fast Multipole Method.

In addition to the IFGF method itself and
the proposed parallelization strategy, this talk
will include a variety of numerical results, which
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illustrate the character of the proposed parallel
method, are presented in this talk. They include
results showing excellent weak and strong paral-
lel scaling properties in all cases considered—for
problems of up to 4, 096 wavelengths in electri-
cal size, and scaling tests spanning from 1 com-
pute core to all 1, 680 cores on 30 nodes available
in the HPC cluster used.

2 Numerical Results
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Figure 1: Measured speedup S1,Nc (vertical
axis) versus number of cores Nc (horizontal axis)
in a strong scaling test transitioning from 1 core
to 1,680 cores (= 30 compute nodes) for three
geometries: a sphere of size 128 wavelengths
(blue), an oblate spheroid of size 128 wave-
lengths (red), and prolate spheroid of size 256
wavelengths (yellow). The dash-dotted purple
line indicates the theoretical perfect speedup.
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