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Modeling and simulation of nonlinear wave propagation in ultrasound imaging
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Abstract

Nonlinear ultrasound imaging has become in-
creasingly important in medical but also indus-
trial areas, as it makes the ultrasound beam
analysis more accurate and enhances the qual-
ity of images. We develop a three dimensional
model for nonlinear ultrasound imaging and a
numerical algorithm to simulate pressure wave-
forms based on the KZK-equation. In our case
we model the propagation of three dimensional
sound beams in water for a rectangular source.
With an eigensystem approach for the Lapla-
cian operator on a rectangular domain and an
operator splitting method the e�ects of nonlin-
earity and di�raction can e�ciently be taken
into account. To demonstrate the accuracy of
the developed model it has been implemented in
MATLAB and simulated results are compared
to acoustic output measurements performed by
a hydrophone.
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1 Introduction

The pressure waves of ultrasound beams have
strong nonlinearities at higher intensities. Fig-
ure 1 shows a beam sent out by a linear probe,
the intensity of the pressure and the correspond-
ing pressure waveforms at di�erent depths.

Figure 1: Acoustic measurement: overview

The wave steepens, the amplitude of the com-
pressional peak gets higher, whereas the rar-
efactional peak gets shallower. The waveform
distorts because of increasing energy in higher
harmonic frequencies. To model this behavior,
we consider the KZK-equation as it accounts
for di�raction, nonlinearity and absorption and
uses a paraxial approach which is especially suit-

able for directive sound beams [2]. We investi-
gate the wave propagation in water, so atten-
uation can be neglected and the KZK-equation
in integrated form in terms of the pressure p
reduces to

∂zp =
c0
2

∫ τ

−∞
∆⊥pdτ̃ +

β

2ρ0c30
∂τp

2, (1)

where τ is the retarded time, c0 the speed of
sound, ρ0 the density and β the nonlinearity
parameter. The direction of propagation is z,
so x, y are orthogonal coordinates and ∆⊥ =
∂2
x + ∂2

y . An e�cient numerical method to solve
this equation is an operator splitting approach
[5], where each physical e�ect, i.e.

∂zp =
c0
2

∫ τ

−∞
∆⊥p dτ̃ , (2)

∂zp =
β

2ρ0c30
∂τp

2, (3)

is assumed to operate independently of the other
over su�ciently small propagation distances.

2 Model equation

The shape of the beam strongly depends on the
geometry of the probe [4] which we assume to be
rectangular. Since it is symmetrical around its
central axis we only consider the �rst quadrant.
Looking at the classical eigenvalue problem for
the Laplace operator with Neumann boundary
conditions [1] on Ω = [0, a] × [0, b], the eigen-
values and eigenvectors are explicitly given by

λjk =
π2j2

a2
+

π2k2

b2
,

ϕjk(x, y) =
2√
ab

cos
(
jπ

x

a

)
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(
kπ

y

b

)
.

The overall pressure at any time τ and position
x, y, z is given by

p(x, y, z, τ) =
∑

j

∑

k

pjk(z, τ)ϕjk(x, y). (4)

With these relations solving (2) is equivalently
to solve for all m,n the ODE

pmn(z, τ) = − 2

c0λmn
pmn
zτ (z, τ). (5)

From (4) one can also derive an expression for
the source condition.
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3 Numerical results

We start our algorithm by applying a discrete
cosine transform to the initial data, compare
(4). Then we perform the di�raction step over
a su�ciently small distance of propagation ∆z,
where (5) has been discretized with an implicit
�nite di�erence scheme. Next, we change back
into time domain by applying the inverse cosine
transform. Then we take the e�ect of nonlin-
earity with a discretized version of (3) over ∆z
into account and one step is completed. Now,
this algorithm has to be carried out until the
�nal plane at depth zout is reached.

The following simulations were performed with
MATLAB based on the proposed algorithm where
the initial data was calculated by FIELD II [3].
Figure 2 shows numerical simulations of pres-
sure waveforms on the central axis with the cor-
responding frequency spectra at various distances
based on the proposed numerical algorithm.

Figure 2: On-axis pressure waveforms with cor-
responding frequency spectra at di�erent depths

Finally, in the following �gures we compare on-
axis pressure waveforms from acoustic measure-
ments (blue) and simulations (orange) at di�er-
ent depths.

Figure 3: waveform at z=1.5mm, z=16.5mm

Figure 4: waveform at z=26.5mm, z=39.5mm

4 Outlook

Future work is the derivation of a paraxial model
based on the KZK-equation for vibro-acoustic
imaging, do simulations and to put it into the
mathematical framework of inverse problems (more
precisely, coe�cient identi�cation in PDEs) and
regularization.

References

[1] Denis S. Grebenkov and Binh-Thanh
Nguyen, Geometrical structure of Laplacian
eigenfunctions, Society for Industrial and
Applied Mathematics, June 2012.

[2] Mark F. Hamilton and David T. Black-
stock, Nonlinear Acoustics, Acoustical So-
ciety of America, 1998.

[3] J.A. Jensen, Field: A Program for Sim-

ulating Ultrasound Systems, Published in
Medical & Biological Engineering & Com-
puting, pp. 351-353, Volume 34, Supple-
ment 1, Part 1, 1996.

[4] Thomas L. Szabo, Diasgnostic Ultrasound

Imaging: Inside Out, Elsevier Academic
Press, 2004.

[5] Trond Varslot and Gunnar Taraldsen,
Computer Simulaion of Forward Wave

Propagation in Soft Tissue, IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and
Frequency Control, October 2005.


