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Abstract

Nonlinear ultrasound imaging has become in-
creasingly important in medical but also indus-
trial areas, as it makes the ultrasound beam
analysis more accurate and enhances the qual-
ity of images. We develop a three dimensional
model for nonlinear ultrasound imaging and a
numerical algorithm to simulate pressure wave-
forms based on the KZK-equation. In our case
we model the propagation of three dimensional
sound beams in water for a rectangular source.
With an eigensystem approach for the Lapla-
cian operator on a rectangular domain and an
operator splitting method the effects of nonlin-
earity and diffraction can efficiently be taken
into account. To demonstrate the accuracy of
the developed model it has been implemented in
MATLAB and simulated results are compared
to acoustic output measurements performed by
a hydrophone.
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1 Introduction

The pressure waves of ultrasound beams have
strong nonlinearities at higher intensities. Fig-
ure 1 shows a beam sent out by a linear probe,
the intensity of the pressure and the correspond-
ing pressure waveforms at different depths.
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Figure 1: Acoustic measurement: overview

The wave steepens, the amplitude of the com-
pressional peak gets higher, whereas the rar-
efactional peak gets shallower. The waveform
distorts because of increasing energy in higher
harmonic frequencies. To model this behavior,
we consider the KZK-equation as it accounts
for diffraction, nonlinearity and absorption and
uses a paraxial approach which is especially suit-

able for directive sound beams [2]. We investi-
gate the wave propagation in water, so atten-
uation can be neglected and the KZK-equation
in integrated form in terms of the pressure p
reduces to

d.p = / Aypdf + 2 y ——0.p%, (1)
OC()
where 7 is the retarded time, ¢y the speed of

sound, po the density and ( the nonlinearity
parameter. The direction of propagation is z,
so x,y are orthogonal coordinates and A, =
02 + 85. An efficient numerical method to solve
this equation is an operator splitting approach
[5], where each physical effect, i.e.

o.p= 0 / ALpds, 2)

azp = 9 an ) (3)
pOC(]

is agsumed to operate independently of the other
over sufficiently small propagation distances.

2 Model equation

The shape of the beam strongly depends on the
geometry of the probe [4] which we assume to be
rectangular. Since it is symmetrical around its
central axis we only consider the first quadrant.
Looking at the classical eigenvalue problem for
the Laplace operator with Neumann boundary
conditions [1] on Q = [0,a] x [0,b], the eigen-
values and eigenvectors are explicitly given by

ME = +

&k (z,y) = 2 cos (jw%) cos (k‘ﬂ'%) .

The overall pressure at any time 7 and position
x,y, z is given by

Zzp?m Fa,y). (4)

With these relatlons solvmg (2) is equivalently
to solve for all m,n the ODE

2 mn
P T )
From (4) one can also derive an expression for
the source condition.

p(x,y,2,7)

pmn('z7 T) = -
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3 Numerical results

We start our algorithm by applying a discrete
cosine transform to the initial data, compare
(4). Then we perform the diffraction step over
a sufficiently small distance of propagation Az,
where (5) has been discretized with an implicit
finite difference scheme. Next, we change back
into time domain by applying the inverse cosine
transform. Then we take the effect of nonlin-
earity with a discretized version of (3) over Az
into account and one step is completed. Now,
this algorithm has to be carried out until the
final plane at depth zoy is reached.

The following simulations were performed with

MATLAB based on the proposed algorithm where

the initial data was calculated by FIELD II [3].
Figure 2 shows numerical simulations of pres-
sure waveforms on the central axis with the cor-
responding frequency spectra at various distances
based on the proposed numerical algorithm.
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Figure 2: On-axis pressure waveforms with cor-
responding frequency spectra at different depths

Finally, in the following figures we compare on-
axis pressure waveforms from acoustic measure-
ments (blue) and simulations (orange) at differ-
ent depths.
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Figure 3: waveform at z=1.5mm, z=16.5mm
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Figure 4: waveform at z=26.5mm, z=39.5mm

4 Outlook

Future work is the derivation of a paraxial model
based on the KZK-equation for vibro-acoustic
imaging, do simulations and to put it into the

mathematical framework of inverse problems (more

precisely, coefficient identification in PDEs) and
regularization.
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