Nonlinear Helmholtz equations with sign-changing diffusion coefficient

Rainer Mandel¹, <u>Zoïs Moitier</u>^{1,*}, Barbara Verfürth²

¹Institute for Analysis, Karlsruhe Institute of Technology, Karlsruhe, Germany

²Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Karlsruhe,

Germany

*Email: zois.moitier@kit.edu

Abstract

We study nonlinear Helmholtz equations with sign-changing diffusion coefficients on bounded domains. The existence of an orthonormal basis of eigenfunctions is established making use of weak T-coercivity theory. All eigenvalues are proved to be bifurcation points and the bifurcating branches are investigated both theoretically and numerically. In a one-dimensional model example we obtain the existence of infinitely many bifurcating branches that are mutually disjoint, unbounded, and consist of solutions with a fixed nodal pattern. We also extend the numerics to a Drude model.

Keywords: Helmholtz equation; Bifurcation Theory; Sign-changing; **T**-coercivity.

1 Problem setting

We are interested in the nonlinear Helmholtz equations in dimension $N \in \{1, 2, 3\}$ of the form:

$$-\operatorname{div}\left(\sigma(x)\nabla u\right) - \lambda c(x)u = \kappa(x)u^{3}, \quad \text{in } \Omega, \ (1)$$

for $(\lambda, u) \in \mathbb{R} \times \mathrm{H}_{0}^{1}(\Omega)$ where Ω is a bounded open domain of \mathbb{R}^{N} , the diffusion coefficient $\sigma \in \mathrm{L}^{\infty}(\Omega)$ is sign-changing, $0 < c \in \mathrm{L}^{\infty}(\Omega)$, and $\kappa \in \mathrm{L}^{\infty}(\Omega)$. Being sign-changing means that the domain Ω is partitioned in two open subdomains Ω_{\pm} such that $\overline{\Omega_{-}} \cup \overline{\Omega_{+}} = \overline{\Omega}, \Omega_{-} \cap \Omega_{+} = \emptyset$, and the function σ is negative on Ω_{-} and positive on Ω_{+} . The main goal is to detect nontrivial solutions of Eq. (1) that bifurcate from the trivial solution family $\{(\lambda, 0) \mid \lambda \in \mathbb{R}\}$.

Equation (1) occurs in the study of timeharmonic wave propagation across an interface between a dielectric and a metamaterial with negative permeability and nonlinear Kerr-type permittivity [3]. Those two effects have been studied separately. The term κu^3 is a classic manifestation of the nonlinear Kerr-type permittivity. In the case of positive diffusion coefficients σ on the whole domain, it is well known that all the eigenvalues give rise to bifurcation branches. The metamaterial property manifests by having σ negative on the subdomain Ω_{-} . The linear theory dealing with the well-posedness of such problems for right-hand sides f(x) instead of $\kappa(x) u^3$ has been studied both analytically and numerically [1]. The main difficulty with the indefinite operator $u \mapsto -\operatorname{div}(\sigma(x) \nabla u)$ is that the standard theory for elliptic boundary value problems based on the Lax-Milgram Lemma does not apply. The (weak) T-coercivity has been introduced to recover a linear theory in the Fredholm sense. We assume that the operator $u \mapsto -\operatorname{div}(\sigma(x) \nabla u)$ is weakly T-coercive, which means that there exists an isomorphism $T: H_0^1(\Omega) \to H_0^1(\Omega)$ and a compact operator $K: H^1_0(\Omega) \to H^1_0(\Omega)$ such that

$$(u,v)\mapsto \int_\Omega \sigma \nabla u\cdot \nabla(\mathrm{T} v) + \int_\Omega \nabla(\mathrm{K} u)\cdot \nabla v$$

is coercive. Being weakly T-coercive depends on the precise shape of the interface $\partial \Omega_{-} \cap \partial \Omega_{+}$ and jumps of σ across the interface but, in dimension 1 and 2, it is known to be the case in many settings.

2 Main results

The weak T-coercivity ensured the existence of an orthonormal basis $(\phi_j)_{j\in\mathbb{Z}}$ consisting of eigenfunctions associated to the linear differential operator $u \mapsto -c^{-1} \operatorname{div} (\sigma \nabla u)$. Due to the sign-change of σ the corresponding sequence of eigenvalues $(\lambda_j)_{j\in\mathbb{Z}}$ satisfy $\lambda_j \to \pm \infty$ as $j \to \pm \infty$. Using some recent bifurcation result for strongly indefinite operators needed because of the sign-change of σ , we can show [3]:

Theorem 1 Each eigenpair (λ_j, ϕ_j) is a bifurcation point of Eq. (1). If λ_j has an odd geometric multiplicity then the connected component $C_j \subset \mathbb{R} \times \mathrm{H}^1_0(\Omega)$ containing $(\lambda_j, 0)$ satisfies Rabinowitz' alternative:

(1) \mathcal{C}_i is unbounded in $\mathbb{R} \times \mathrm{H}^1_0(\Omega)$;

(2) C_i contains another trivial solution $(\lambda_i, 0)$.

In a 1D setting with the subdomain $\Omega_{-} = (a_{-}, 0)$ and $\Omega_{+} = (0, a_{+})$, and piecewise constant functions σ, c , we can strengthen our result. Using the almost explicit expression of the eigenvalues, we can use the distribution of zeros of the eigenfunction to show:

Corollary 2 The connected component $C_j \subset \mathbb{R} \times \mathrm{H}^1_0(\Omega)$ is unbounded and $C_j \cap C_i = \emptyset$ for $i \neq j$.

Using additional assumptions, see [3, Theorem 6.3], which has been verified in the 1D settings, we can show a variational result for our problem. Meaning, for a fix $\lambda \in \mathbb{R}$, there exists infinitely many solutions of Eq. (1).

3 Bifurcation visualization

We consider $\Omega_{-} = (-5,0)$, $\Omega_{+} = (0,5)$, the diffusion coefficient is chosen piecewise constant $\sigma|_{\Omega_{-}} \equiv -1.005$ and $\sigma|_{\Omega_{+}} \equiv 1$, $c \equiv 1$, and $\kappa \equiv 1$. The numerics have been done using a finite element discretization and the Matlab package pde2path [4]. The finite element discretization use a T-conform mesh which is refined close to the interface $\{0\}$ to faithfully represent the interface behavior. Figure 1 is the 2D bifurcation diagram (abscissa λ and ordinate $||u||_{L^2(\Omega)}$) where λ is initialized in [-10, 15]. All branches are unbounded and seemingly do not contain points of secondary bifurcation.

Figure 1: Bifurcation diagram.

4 Extension: The Drude model

A simple known model to have negative diffusion parameter is the Drude model, however in that model the coefficients σ and c depend on the spectral parameter λ . In [2], the diffusion coefficient σ and coefficient c are now given by

$$\sigma_{\lambda}(x) = \frac{1}{1 - \mathbf{1}_{\Omega_{-}}(x)\frac{\Lambda_{\sigma}}{\lambda}}, \ c_{\lambda}(x) = 1 - \mathbf{1}_{\Omega_{-}}(x)\frac{\Lambda_{c}}{\lambda}$$

where $\mathbf{1}_{\Omega_{-}}(x)$ is the indicator function of Ω_{-} and with $0 < \Lambda_{c} < \Lambda_{\sigma}$ constants.

For the numerical study, we use the same 1D subdomain $\Omega_{-} = (-5, 0)$ and $\Omega_{+} = (0, 5)$, and $\Lambda_{c} = 4$, $\Lambda_{\sigma} = 7$, and $\kappa \equiv 1$. Using the same numerical method as before, Figure 2 we show the 2D bifurcation diagram (abscissa λ and ordinate $||u||_{L^{2}(\Omega)}$) where λ is initialized in [0.1, 9]. We observe that the branches seems to accumulate at $\lambda = 0$ and, around $\lambda = \Lambda_{\sigma}$, we see a branch that seems to have a vertical asymptote and another that non-smoothly cross the values Λ_{σ} . We expect more intricate branch behavior around the values $\lambda = 0$ or Λ_{σ} as either c_{λ} or Λ_{σ} blow-up around those points but a more rigorous study is needed.

Figure 2: Drude model: bifurcation diagram.

References

- A.-S. Bonnet-Ben Dhia, L. Chesnel, P. Ciarlet, Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials, *ESAIM: M2AN* (2012).
- [2] C. Hazard, S. Paolantoni, Spectral analysis of polygonal cavities containing a negativeindex material, AHL (2020).
- [3] R. Mandel, Z. Moitier, B. Verfürth, Nonlinear Helmholtz equations with signchanging diffusion coefficient, to appear in C. R. Math., arXiv:2107.14516.
- [4] H. Uecker, D. Wetzel, J. Rademacher, pde2path - a Matlab package for continuation and bifurcation in 2D elliptic systems, *NMTMA* (2014).

Acknowledgment. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project-ID 258734477 — SFB 1173.