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Abstract

This talk will consider the modelling of sound
propagation in slowly varying ducts. In straight
cylindrical ducts, lined with a locally reacting
material, sound transmission can be decomposed
into a set of modal solutions. However, in prac-
tise, the ducts we wish to model have bound-
aries which vary slowly along the axial direction.
In order to maintain semi-analytic modal so-
lutions, the WKB (Wentzel-Kramers-Brillouin)
approximation is adopted. The approximation
assumes that the boundaries vary sufficiently
slowly, that any propagating modes remain in
the same eigenstate and do not experience any
reflection. This allows for the introduction of
a small parameter ϵ, related to the gradient of
the duct boundaries, which allows for multiple
scale asymptotics. The resulting solutions are
slowly varying modes. Such modes have been
studied extensively to leading order, however,
in this talk we shall consider the first order be-
haviour in ϵ.
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1 Introduction

The study of sound propagation in slowly-varying
lined ducts is well established to leading order,
with [1] and [2] considering the problem without
flow, and in the presence of an axial mean flow
respectively. In this talk we shall consider the
case of extending the previous work on ducts
without flow to higher order in ϵ, with a view
to completing the analysis to include mean axial
flow in the near future. The ducts are consid-
ered to be lined with a locally reacting acous-
tic material, such as an array of Helmholtz res-
onators, which can be modelled by a frequency
dependent surface impedance. In order to pre-
serve modal analysis, the WKB approximation
is assumed, which is that if the geometry is suf-
ficiently slowly varying, any propagating modes
will remain in the same eigenstate and will not
experience any reflection.

2 Definition of the Problem

Let us consider an axis-symmetric annular duct,
defined in polar co-ordinates (r, θ, x), with bound-
aries whose position’s vary in the axial direc-
tion. At both boundaries, the duct is lined with
a locally reacting acoustic material. Then, we
define a slowly varying parameter, ϵ, which is
related to the rate of change of the duct bound-
aries. Here we take ϵ to be the root mean square
of the gradient of the boundaries in x. Note,
that ϵ is not present in the final solutions, so
can be chosen to be any measure of the speed of
variance of the boundaries.

Figure 1: Sketch of an annular duct with slowly
varying boundaries.

A slowly varying co-ordinate, X = ϵx, is
defined, which the slowly varying boundaries,
r = a(X) and r = b(X), depend on. After as-
suming periodic solutions in time t and angle θ
and performing the multiple scales analysis out-
lined in [3], an ansatz of the following form is
posed:

Pm(r,X) =
(
p̃m,0(r,X) + ϵp̃m,1(r,X)

+ϵ2p̃m,2(r,X)
)
exp

{
− i

ϵ

∫ X

k0(X
′)dX ′},

(1)

where Pm(r,X) is a single time harmonic mode,
m is the azimuthal order and the axial peri-
odicity is governed by the slowly wavenumber
k0(X). Substituting (1) into the Helmholtz equa-
tion and collecting powers of ϵ gives the hierar-
chy of equations:

O(1) :L0(p̃m,0) = 0,

O(ϵ) : L0(p̃m,1) = F0(p̃m,0),

O(ϵ2) : L0(p̃m,2) = F0(p̃m,1) + F1(p̃m,0),

(2)

where L0 is the 2nd order linear differential op-
erator for Bessel’s equation, and F0,1 are known
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forcing terms. For the boundary condition, it
is assumed that at r = a(X), b(X) the surface
impedance are given by Za(ω) and Zb(ω) respec-
tively. This leads to the boundary conditions:

∂Pm

∂na,b
=

ωPm

iZa,b
at r = a(X), b(X), (3)

where na,b is the normal pointing into the bound-
ary. The hierarchy of equations for the bound-
ary conditions are derived by expanding the nor-
mal at each boundary in powers of ϵ.

3 Finding Modal Solutions

The leading order solution is well established to
be a weighted sum of Bessel functions of the first
kind, multiplied by a slowly varying amplitude,

p̃m,0 = A0(X)
(
Jm(α0(X)r) + Ξ(X)Ym(α0(X)r)

)
, (4)

where α0(X) is the, slowly varying, radial wave
number and Ξ(X) is known. In order to find
the slowly varying amplitude A0(X), the O(ϵ)
governing equations must be considered. It is
not necessary to consider the full solution to this
problem, as we can apply a solvability condition,
by considering Green’s second identity:

∫ b(X)

a(X)

(
p̃m,0L0(p̃m,1)− p̃m,1L0(p̃m,0)

)
r′dr′

=
[
p̃m,0

∂p̃m,1

∂r
− ∂p̃m,0

∂r
p̃m,1

]b(X)

r=a(X)
.

(5)

Upon substitution of the governing equations
and boundary conditions, (5) can be reduced
to find an explicit form of A0(X). However,
in the case considered, the full solution to the
O(ϵ) equations is required. One way to find this
solution is to apply the method of variation of
parameters to the inhomogeneous ODE. By ap-
plying the boundary conditions we find A0(X)
to be the same as applying (5), but leaves a simi-
lar unknown slowly varying coefficient A1(X) at
first order. In order to solve for A1(X) another
solvability condition can be applied, this time
on the O(ϵ2) equations, which leads to an ODE
to solve for A1(X) of the form

A(X)
dA1

dX
+B(X)A1(X) + C(X) = 0, (6)

where A(X), B(X) and C(X) are known func-
tions.

4 Results and Comparisons

To demonstrate the improved accuracy of the
first order solution, compared to the leading or-
der, we consider the example of cylindrical duct
with a cosine outer boundary. The boundary is
chosen, such that ϵ = 0.1. The angular fre-
quency is ω = 3, and m = 0, with surface
impedance Zb = 2− i.

Figure 2: The absolute error between the com-
plex pressure fields for the leading and first or-
der propagating modes, compared with numeric
results.

Figure 2 shows the absolute error between
the pressure fields, Pm(r,X), at O(1) and O(ϵ)
and numeric simulations performed using COM-
SOL. The numeric solution for a single mode is
found by applying the mode shape as a bound-
ary condition at x = 0. The geometry shown is
an axis-symmetric slice in (r, x). Clearly it can
be seen that the first order correction provides a
significant reduction in error between the fields.

5 Flow Duct Extension

Depending on whether or not results are gener-
ated in time for the conference, the first order
solution could also be presented for the case of
axial mean flow, as this is the ultimate goal of
the current work. The method of solution will
be the same, however, the inhomogenous parts
of the equations becomes more complex when
flow is introduced, leading to greater computa-
tional complexity.
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