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Abstract

In this work, we are interested in solving scatter-
ing problems in anisotropic elastic unbounded
domains. We propose an extension of a new
method called the Half-Space Matching (HSM)
method which enables to consider any anisotropy.
Also, we compare HSM results with Perfectly
Matched Layers (PMLs) results for several anisotropic
media to emphasize the robustness of the HSM
method.
Keywords: Anisotropic elastodynamics, unbounded
domains, Domain decomposition methods.

1 Introduction

Elastodynamics scattering problems occur for
instance in the context of geophysical surveys
or non destructive testing simulations. Classi-
cally, the difficulty is to reformulate the prob-
lem in a bounded domain to solve it numeri-
cally. Several approaches exist in the literature,
such as absorbing layers, absorbing or trans-
parent boundary conditions or integral equation
methods, but they usually cannot handle every
anisotropy. In particular, it is well-known for
time-domain regime [1] that the PMLs method
suffers from instabilities for some anisotropic ma-
terials. For frequency-domain, to the best of our
knowledge, fewer results exist and the equivalent
of the instabilities is less clear.

To consider general anisotropic materials, we
propose an extension of the HSM method, first
introduced for anisotropic scalar equations [2],
to the elastodynamic case. Also, we believe that
the HSM formulation can help to understand
some curious results observed using PMLs in
the frequency-domain for elastic media. A com-
parison study between the HSM and the PMLs
methods for various anisotropic materials will
also be shown.

2 The HSM formulation

We consider the scattering problem:

−divσ(u)− ρω2u = 0 in Ω = R2 \ O,
σ(u)ν = g on ∂O,

(1)
where u is the diffracted field, O is a bounded
obstacle, ν is the unit outward normal and the
stress tensor σ(·) is linked to the strain tensor
ε(·) via the general anisotropic Hooke’s law (us-
ing Voigt’s notations):



σxx(u)
σyy(u)
σxy(u)


 =



C11 C12 C13

C12 C22 C23
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εxx(u)
εyy(u)
2εxy(u)


 .

The coefficients Cij are supposed to be local per-
turbation of constant coefficients as well as the
density ρ.

Figure 1: Schema and notations.

To get the HSM formulation of this problem,
the idea is to split the domain into five parts,
see Figure 1:

• a square Ωb = [−b, b]2 \O, b > 0, contain-
ing all the heterogeneities and in which we
use a finite elements representation of the
solution denoted by ub,

• and four half-spaces Ωj in which we use
Fourier-integral representations of the so-
lution denoted by uj .

More precisely, taking advantage of the homo-
geneity of the medium in the half-spaces, we can

Suggested members of the Scientific Committee:
Wangtao Lu, Simon Chandler-Wilde, Martin Gander



WAVES 2022, Palaiseau, France 2

use the Fourier transform in the transverse di-
rection to express the solution uj in Ωj as a
function of its trace Φj on Σj := ∂Ωj . For in-
stance, in Ω0 = {x ≥ a} × R, 0 < a < b, we get
an expression of the form:

u0(x, y) =

∫

R
Q(ξ)eiK(ξ)(x−a)+iξyQ−1(ξ)Φ̂0(ξ)dξ

(2)
where Q(ξ) is a 2×2 matrix and K(ξ) is a 2×2
diagonal matrix that will be precised in the talk.
As we can notice, this representation is similar
to plane waves representation, with the differ-
ence that it also takes into account evanescent
plane waves (when Re(K(ξ)) 6= 0). Let us sim-
ply add that to get these expressions in each
half-space, we need to properly select outgoing
waves based on the direction of their group ve-
locity.

Then, to ensure the matching between these
different representations in the different subdo-
mains, we must impose compatibility conditions
on the boundaries of each subdomain. This leads
to a formulation where the new unknowns are ub

in the Ωb and the tracesΦj on Σj which are cou-
pled via integral operators. This HSM formula-
tion is suitable for discretization and has been
validated in the isotropic case by comparison
with an analytical reference solution. As already
mentioned, it is also suitable for anisotropic me-
dia, as illustrated on Figure 2, and we can make
an a posteriori reconstruction of the solution in
the four half-spaces discretizing formula (2).
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Figure 2: On the left, slowness diagram of the
anisotropic material. On the right, modulus of
the diffracted field in Ωb and reconstruction in
Ωj .

3 The PMLs method

In the time-harmonic regime, the PMLs formu-
lation is obtained by using a complex scaling in
the exterior of the domain of interest. In par-
ticular, we can consider the simple change of
variables t̃ = α(t)(t − b) + b, t ∈ {x, y}, where

α(t) = 1 if |t| ≤ b and α(t) = meiθ if |t| > b
with m > 0 and θ ∈ [0, π2 [. Then, we expect
the PML solution to exponentially decay in the
layers, so that we can truncate them at a finite
distance.

Now, using the half-space representation (2),
we easily show that the PML solution in Ω0

(considering only stretching in direction x) is ex-
ponentially decaying if Im(eiθK(ξ)) > 0, ∀ξ ∈
R. One interesting feature is the fact that this
condition concerns both propagative and evanes-
cent plane waves. In particular, in presence of
backward waves, which corresponds to the case
where Im(K(ξ)) = 0 and Re(K(ξ)) < 0 for ξ in
an interval, this condition can never be satisfied
(let us mention that this case leads to instabili-
ties in time-domain). Also, for evanescent waves
when Im(K(ξ)) > 0, if Re(K(ξ)) 6= 0 (corre-
sponding to inhomogeneous waves) this condi-
tion imposes that θ ≤ θ∗ with θ∗ < π

2 . Numer-
ically, if this condition for evanescent waves is
not satisfied, even in absence of backward waves,
we can observe a strange behavior of the solu-
tion in the PMLs as illustrated in Figure 3. We
therefore guess that these inhomogeneous plane
waves are important to understand the behavior
of the PML solution. In the talk, several numer-
ical tests will be shown to study this question.
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Figure 3: On the left, slowness diagram of the
orthotropic material. On the right, modulus of
the diffracted field in the physical domain and
in the PMLs.
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