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Instability and over-reflection of acoustic waves in compressible boundary layer flows
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Abstract

2D direct numerical simulations of acoustic
waves in supersonic compressible boundary layer
flows were conducted using the high order dis-
continuous Galerkin method. The purpose was
to verify both theoretically predicted instabili-
ties and to show two mode doubling effects caused
by a doubling in frequency and wave number,
respectively. Secondly, simulated over-reflection
coefficients show good agreements to theoretical
results, and, most important, resonant over-re-
flection is verified in a narrow frequency band.
Keywords: PBE, over-reflection, DNS, stabil-
ity, boundary layer acoustics

1 Introduction

Acoustic waves play a key role in numerous engi-
neering applications. When these waves interact
with a mean shear flow, e.g. in a boundary layer,
the propagation is significantly affected and ef-
fects such as instabilities can arise so that the
amplitude of an unstable wave increases with
time. This may lead to a transition to turbu-
lence and hence must be well understood.

Another acoustic effect in boundary layers
is the reflection at the surface. During this pro-
cess an incident wave traveling through the large
velocity gradients in the shear layer deforms in
amplitude and shape. Therefore over-reflection
may occur which is when the amplitude of the
reflected wave is larger than the amplitude of
the incident wave. In this case, the acoustic
wave absorbs energy from the main flow. The
strength of this effects varies with wave number
and frequency of the incident wave and in par-
ticular resonant over-reflection may occur in the
vicinity of unstable modes, which is accompa-
nied by a strong exaggeration of the amplitude.

2D direct numerical simulations (DNS) are
conducted to study temporal instability and
over-reflection using the high order discontinu-
ous Galerkin (dG) method.

2 Boundary layer acoustics

This study is confined to compressible, inviscid,
homentropic boundary layer flows with an ex-
ponential velocity profile as a model problem.
Based on these assumptions, the Euler equa-
tions can be linearized in terms of small acoustic
perturbations. Combined into one equation and
non-dimensionalized with the boundary layer
thickness, the free-stream velocity and the den-
sity of the free-stream, this yields the Pridmore-
Brown equation
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This second order ODE for the density ampli-
tude ρ̂ defines both the propagation and sta-
bility of the acoustic wave. Zhang & Ober-
lack [1] derived an exact solution to eq. (1) in
terms of confluent Heun functions denoted by
Hc
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, in which “·” is an abbreviation for

parameters depending on the dimensionless
wave number α, dimensionless frequency ω and
Mach number M [1]. The solution contains two
Heun functions Hc and H̃c with different param-
eters that represent the incident and the out-
going wave. Based on this, the over-reflection
coefficient is defined by
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with the parameter θ depending on α, ω and
M. R is the ratio between the amplitude of the
reflected to the incident wave. It is calculated
from the solution to eq. (1) using the boundary
conditions of an unit amplitude incident wave
and vanishing normal velocity at the wall.

Stability is investigated by only considering
a vanishing amplitude ρ̂ as y → ∞. This is
equivalent to the special case of R = 0 in which
the numerator of eq. (2) defines an eigenvalue
equation for the eigenvalue ω [1].
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Figure 1: Short time Fourier transformation of
the difference between the analytical solution of
the pressure and the DNS. M = 5 and α = 1.5.
The frequency given by the eigenvalue problem
is ωEV = 1.028 + i1.0770 · 10−2.

3 Temporal instability

The above mentioned eigenvalue equation has
at least one solution for each Mach and wave
number. The eigenvalue is written as ωEV =
ω(M, α) and is temporarily unstable for Im(ωEV)
> 0. Having this in mind, a DNS is conducted
with the non-linear Euler equations using the
dG method of order 6. The initial condition is
the incident wave of the linearized solution of
eq. (1). Comparison of DNS and theory shows
good agreement between the simulation as long
as the amplitude of the pressure perturbation is
less than 3% of the base flow pressure [2]. A
deeper analysis reveals that the error caused by
the linearization are due to two different mode
doubling effects. A mode with twice the eigen-
value frequency ω1 = 2ωEV and a mode, whose
frequency ω2 = ω(M, 2α) is the solution to the
eigenvalue problem with a doubling of the wave
number, are present. The two mode doubling
frequencies are shown in figure 1 at ω1 ≈ 2 and
ω2 ≈ 1.5. Additional modes for n > 2 are
present but their amplitude is negligible com-
pared to n = 1. The growth rates differ for each
mode and for long times the amplitude at the
original eigenvalue is dominant and the mode
doubling effects become negligible.

4 Over-reflection

Simulations of over-reflection are conducted by
placing an incident wave packet in the unsheared
region of the domain. As R is sensitive towards

Figure 2: Comparison between theoretical re-
flection coefficients and simulated results for
M = 5, α = 4 and different frequencies ω. Sim-
ulated data is taken from [3].

variations of wave number or frequency, partic-
ular attention was paid to the generation of the
wave packet so that the wave is not distorted.
The wave packet is then reflected at the wall
and the ratio of the amplitude of the reflected
wave to the incident wave is the over-reflection
coefficient R, see eq. (2). The coefficient is ex-
tracted from the simulation by comparing the
amplitude of incident and reflected waves over
a section outside of the boundary layer. The re-
sult in comparison with the analytical values for
R computed by Zhang et. al (2022) are shown in
figure 2 for M = 5, α = 4 and varying frequen-
cies [3]. Over-reflection occurs for all frequencies
and a sharp peak, the resonant over-reflection, is
located at ω ≈ 1.85. This is the frequency of the
eigenvalue solution (numerator of eq. (2)) for the
Mach and wave number. The simulation shows
good agreements with the theoretical values of
R. In particular, the resonant over-reflection is
captured well.
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