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Abstract

We present a discretization for the vectorial equa-
tions of solar and stellar oscillations. Special at-
tention is paid to preserving compatibility with
the generalized Helmholtz decomposition used
in the analysis of the continuous model to achieve
stability.
Keywords: finite element method, Galbrun’s
equation, helioseismology

1 Introduction

The Galbrun’s equation with additional rota-
tional and gravitational terms model stellar os-
cillations. Recently, HDG numerical methods
for the related scalar case, a convected Helmholtz
equations, have been devised and analysed in
[1]. Furthermore, in [2], it was shown that the
vector valued problem is well-posed, when in-
corporating a simple damping term. A suit-
able generalized Helmholtz decomposition plays
a crucial role in the analysis. In the discretiza-
tion, we aim to preserve a discrete version of the
generalized Helmholtz decomposition, which is
crucial for stability and helpful for the numeri-
cal analysis. We present an H(div)-conforming
numerical method that respects the structural
properties of the continuous problem and intro-
duce the tools needed for the numerical analysis.

2 Setting

Galbrun’s equation for time-harmonic acoustic
waves for the unknowns u, ψ is given by the par-
tial differential equation

ρ(−iω + (b · ∇))2u−∇(ρc2s ∇·u)
+(∇·u)∇ p−∇(∇ p · u)− iωγρu

+(Hess(p)− ρHess(ϕ))u+ ρ∇ψ = f

− 1

4πG
∆ψ +∇·(ρu) = 0.

(1)

in the presence of density ρ, pressure p, sound
speed cs, background velocity b, gravitational
background potential ϕ, damping coefficient γ,
gravitational constant G, and source f . This

problem was shown to be well-posed in [2]. For
the discretization, we will focus on a common
simplification of the problem, the Cowling ap-
proximation, given by setting ψ = 0 in (1). We
consider the resulting variational problem over
the Hilbert space

Xb = {u ∈ L2(Ω,C3) : ∇·u ∈ L2(Ω),

(b · ∇)u ∈ L2(Ω,C3), u · nx = 0 on ∂Ω}

over a bounded domain Ω and with inner prod-
uct

⟨u,u′⟩Xb
= ⟨u,u′⟩+ ⟨∇·u,∇·u′⟩

+ ⟨(b · ∇)u, (b · ∇)u′⟩.

The variational problem states: Find u ∈ Xb

such that

a(u,u′) =
3∑

i=1

ai(u,u′) = ⟨f ,u′⟩, ∀u′ ∈ Xb,

with

a1(u,u′) = ⟨ρc2s(∇+q) · u, (∇+q) · u′⟩
− ⟨ρc2sq · u,q · u′⟩

a2(u,u′) = ⟨(Hess(p)− ρHess(ϕ))u,u′⟩
− ⟨ρDu,Du′⟩

a3(u,u′) = −iργω⟨u,u′⟩,

where we have introduced the operator D :=
(−iω+ (b · ∇)) modeling transport and the ab-
breviation q := ρ−1c−2

s ∇ p.
We review the essential parts of the proof

relevant for the analysis of the discretization.
Note that Xb is not compactly embedded in L2

and thus we cannot derive Fredholmness using
a Gårding-type inequality.

First, a generalized version of a Helmholtz
decomposition for the space Xb, presented in [2,
Lemma 3.5], given by the decomposition into
gradient fields, a generalization of divergence-
free fields, and a finite dimensional space, i.e.

Xb = V ⊕W ⊕ Z
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with V ⊂ {∇ v | v ∈ H2(Ω), ∇ v·nx = 0 on ∂Ω},
W = {u ∈ Xb | (∇+q) ·u = 0} and Z with size
related to ker(B), with B ∈ L(H1), ⟨Bu, v⟩ :=
⟨∇u,∇v⟩ − ⟨q · ∇u, v⟩. Second, the operator
A, associated to the bilinear form a(u,u′) =
⟨Au,u′⟩X is shown to be weak T-coercive, i.e.

AT = Bcoercive +Bcompact

for a coercive and a compact operator Bcoercive,
Bcompact. Injectivity ofA is caused by the damp-
ing term. Well-posedness follows using Fred-
holm alternative. The choice of T , which we
will also use in the discrete setting, is a sign
switch operator: Let us denote by PV, PW, PZ

the respective projections, then T is chosen as

T := PV − PW + PZ. (2)

3 Discretization

We follow [2], by considering two distinct cases
for discretization, first focusing on the case with
only background flow present without pressure
and gravity and then the contrariwise case, which
we later merge.

To approximate u we consider discrete func-
tions uh ∈ Xh on which we only impose normal
continuity, i.e. Xh is taken to be a H0(∇·; Ω)-
conforming finite element space, as we cannot
expect functions in Xb to be tangential contin-
uous. Finding a generalized Helmholtz decom-
position for the discretization space, similar to
the one in the continuous setting, will be crucial
for the stability analysis. We aim for an implicit
decomposition of the form

Xh = Vh ⊕Wh,

here we will focus on the crucial spaces V,W,
assuming that the finite dimensional space Z
only contains the zero function.

3.1 Background flow

We first consider the case of constant pressure
and gravitational potential (p = const and ϕ =
const). We obtain an orthogonal decomposition
using the spaces Wh = {u ∈ Xh | ∇·u = 0} and
Vh = {vh ∈ Xh | ⟨vh,wh⟩1,h = 0, ∀wh ∈ Wh}.
We introduce the discrete bilinear form

ah(uh,u
′
h) = a1(vh,v

′
h)+a

2
h(uh,u

′
h)+a

3(uh,u
′
h)

where a2h(·, ·) has additional DG penalization
terms for the tangential jumps across interele-
ment boundaries. Note that since uh = vh+wh,

with wh divergence free, the term a1(·, ·) only
depends on functions in Vh.

To show well-posedness we make use of a
similar sign switch operator as in the continu-
ous case Th := PVh

− PWh
. Crucial for the

numerical analysis is the observation that the
divergence term can dominate the broken H1-
norm, which gives us control over the other vh

terms in the bilinear form. Indeed, using tools
from the numerical analysis of Stokes and linear
elasticity problems for the space Xh, we obtain

∥∇·vh∥0,h ≥ c∥vh∥1,h, ∀vh ∈ Vh. (3)

To prove convergence we derive a type of com-
mutative property of the sign switching opera-
tors

lim
h→0

∥Thphu− phTu∥Xh
= 0, ∀u ∈ Xb,

where ph is the projection onto Xh.

3.2 Pressure and gravity

Next we consider the case with no flow (b =
0), but with non-constant pressure and gravity.
We must weaken the condition in Wh, else the
discrete space may collapse to only containing
the trivial solution. We consider Wh = {u ∈
Xh | ⟨(∇+q) · u, rh⟩ = 0, ∀rh ∈ Qh} where Qh

is a suitable scalar finite element space. Due to
this relaxation we need to take extra care of the
term a1(·, ·), which now also depends on wh. To
obtain an estimate as in (3) we show an inf-sup
stability result of the form

inf
rh∈Qh

sup
uh∈Xh

⟨(∇+q) · uh, rh⟩
∥uh∥1,h∥rh∥Qh

≥ c

for a constant c independent of the discretiza-
tion parameters.
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