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Abstract

Inverse medium problems involve the reconstruc-
tion of a spatially varying medium, u(x), from
available observations. Typically, they are for-
mulated as PDE-constrained optimization prob-
lems and solved by an inexact Newton-like iter-
ation. Clearly, standard grid-based representa-
tions of u are very general but often too ex-
pensive due to the resulting high-dimensional
search space. Adaptive spectral inversion (ASI)
instead expands the unknown medium in a basis
of eigenfunctions of a judicious elliptic operator,
which depends itself on the current iterate. Rig-
orous L2-error estimates of the adaptive spectral
(AS) approximation are proved for an arbitrary
piecewise constant medium.
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1 Inverse scattering problem

Consider the time-dependent wave equation
0%y
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in a bounded domain © C R? and time interval

0 <t < T, together with appropriate initial and

boundary conditions on the boundary I' of €.

Here u(x) denotes the (unknown) squared wave

speed inside Q and f(¢,z) is a known source.

Given (noisy) observations 32" on I of solu-
tions of (1) with f = f,, £ =1,..., N4, we seek
to determine the medium u. Thus, we formu-
late the inverse problem as a PDE-constrained
optimization problem for the standard L2-least-
squares misfit functional,
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where for each ¢, yp = yp(u) is the solution of
(1) with f = f..

— V- (u(x)Vy)=f imnQx(0,7), (1)

2 Adaptive spectral inversion (ASI)

AS decompositions (ASD) have been proposed
as low dimensional search spaces during the it-
erative process of inverse medium problems; see
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Figure 1: (left) true medium w; (right) the ASD
truncation error (8) as a function of h for fixed
e=10"%and K = 3.

[1,2] and the references therein. Here we con-
sider an extension of the ASI approach from [2]
to the time-dependent wave equation.

Since the inverse medium problem is in gen-
eral severely ill-posed, a Tikhonov (TV) regu-
larization term is typically added to the misfit
(2). Here, instead, we rely on the regularizing
effect of the search space selection, which we
adapt iteratively as follows: at the m-th iter-
ation we compute u,, by minimizing (2) in a
low-dimensional search space ¥". Then, based
on u, and ¥™ we build a new search space
U+ for the next iteration.

To construct U1 we combine the previ-
ous search space ¥ with the AS space @k, =
span{gok}ff;”l spanned by the first K, eigenfunc-
tions of the linear elliptic operator [1,2]

Lz—:[um]v =-V- (Me[um]vv)’ (3)
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Thus, for each k

e>0. (4

Lelum)er = Mg In €,

5
pr =10 onl, (5)

where (Ag)r>1 is the nondecreasing sequence of
the eigenvalue of L.[u,,], each repeated accord-

ing to its multiplicity, and {¢y} are L?-orthonormal.

3 Error analysis for ASD

So far, the remarkable ability of the ASD to
(approximately) decompose piecewise constant
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functions has only been supported by numerical
evidence. Here we present rigorous L?-error es-
timates [3| for AS approximations of piecewise
constant functions.

For simplicity, suppose that v :  — R is
piecewise constant with K inclusions,

K
u(z) = apxa,(@), o #0, (6)
k=1

where x4, are the characteristic functions of
Lipschitz domains A CC Q with connected but
mutually disjoint boundaries. Now, let up, € V3,
be the (standard) interpolant of w in an H!-
conforming, piecewise polynomial P"-FE space
V}, associated with a mesh 7, of size h, where
the family {7}, is regular and quasi-uniform.
Suppose {px}X | C Vj, are the (discrete ap-

proximate) eigenfunctions obtained by the Galerkin

FE formulation of the eigenvalue problem (5)
with wu,, replaced by up. Then the AS projection
15 [up] : L*(Q) — @k into the AS space Px =
span{py }5X_| is the standard L2-projection given
by

Vo € O (7)

We have the following error estimate [3]:

(v — M [un]v, ) =0,

Theorem 1 For each v € span{xa, }H | there
exists a constant C = C(v), such that for every
g, h > 0 sufficiently small,

[0 = i [un]vllrz) < CVe+h. (8
In particular, the above is true for v = u.

Remark 2 The estimate of Theorem 1 holds
true in a more general setting [3] where the FE
formulation is replaced by a Galerkin formula-
tion in a closed subspace V° C H' and the FE-
interpolant uy, is replaced by a more general ad-
missible approximation us € V°. Moreover, u
also need not be constant near I' and the weight
function (4) can be replaced by a more general
function.

Consider the piecewise constant medium wu
shown in Figure 1 (left), which consists of K = 3

characteristic functions (obstacles) in = (0,1)2.

To verify the convergence rate in Theorem 1 for
h — 0 and fixed ¢ = 10~%, we compute the
approximation error (8) using P!-FE on a reg-
ular, uniform triangular mesh whose vertices lie
on an equidistant Cartesian grid with mesh size
h. The right frame of Figure 1 corroborates the
expected error decay of O(V/h).
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Figure 2: (left) reconstructed medium with 20%
noise; (right) misfit referring to (2).

4 Numerical Results

Here we apply the ASI approach, described in
Section 2, to solve a time-dependent inverse scat-
tering problem for the (unknown) medium wu
shown in Figure 1, given the scattered wave data
on I' from 32 evenly distributed sources near the
boundary with 20% added noise. The forward
problem (1) is discretized in Q = (0,1)? until
time T' = 1.5 using P2-FE (with mass-lumping)
in space and the (standard, explicit, second-
order) leapfrog method in time. In Figure 2,
we display the reconstructed medium after 18
ASI iterations, when the discrepancy principle is
satisfied: Starting from the homogeneous back-
ground, the ASI algorithm recovers u(z) both
in shape and magnitude quite accurately. In-
stead of a grid-based discrete FE representation
with 250000 unknowns, the dimension of the
search space in the ASI approach never exceeds
Kpax = 100 during the entire inversion. At
each iteration, the first few eigenfunctions ¢y
are computed with P'-FE on the same FE mesh
using a cheap Lanczos method for symmetric
and positive definite eigenvalue problems.
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