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Abstract

Inverse medium problems involve the reconstruc-
tion of a spatially varying medium, u(x), from
available observations. Typically, they are for-
mulated as PDE-constrained optimization prob-
lems and solved by an inexact Newton-like iter-
ation. Clearly, standard grid-based representa-
tions of u are very general but often too ex-
pensive due to the resulting high-dimensional
search space. Adaptive spectral inversion (ASI)
instead expands the unknown medium in a basis
of eigenfunctions of a judicious elliptic operator,
which depends itself on the current iterate. Rig-
orous L2-error estimates of the adaptive spectral
(AS) approximation are proved for an arbitrary
piecewise constant medium.
Keywords: wave equation, inverse scattering,
regularization

1 Inverse scattering problem

Consider the time-dependent wave equation

∂2y

∂t2
−∇ · (u(x)∇y) = f in Ω× (0, T ), (1)

in a bounded domain Ω ⊂ Rd and time interval
0 < t < T , together with appropriate initial and
boundary conditions on the boundary Γ of Ω.
Here u(x) denotes the (unknown) squared wave
speed inside Ω and f(t, x) is a known source.

Given (noisy) observations yobs
` on Γ of solu-

tions of (1) with f = f`, ` = 1, . . . , Ns, we seek
to determine the medium u. Thus, we formu-
late the inverse problem as a PDE-constrained
optimization problem for the standard L2-least-
squares misfit functional,

J(u) =
1

2

Ns∑

`=1

∫ T

0
‖y` − yobs

` ‖2L2(Γ), (2)

where for each `, y` = y`(u) is the solution of
(1) with f = f`.

2 Adaptive spectral inversion (ASI)

AS decompositions (ASD) have been proposed
as low dimensional search spaces during the it-
erative process of inverse medium problems; see
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Figure 1: (left) true medium u; (right) the ASD
truncation error (8) as a function of h for fixed
ε = 10−8 and K = 3.

[1, 2] and the references therein. Here we con-
sider an extension of the ASI approach from [2]
to the time-dependent wave equation.

Since the inverse medium problem is in gen-
eral severely ill-posed, a Tikhonov (TV) regu-
larization term is typically added to the misfit
(2). Here, instead, we rely on the regularizing
effect of the search space selection, which we
adapt iteratively as follows: at the m-th iter-
ation we compute um by minimizing (2) in a
low-dimensional search space Ψm. Then, based
on um and Ψm, we build a new search space
Ψm+1 for the next iteration.

To construct Ψm+1, we combine the previ-
ous search space Ψm with the AS space ΦKm =
span{ϕk}Km

k=1 spanned by the firstKm eigenfunc-
tions of the linear elliptic operator [1, 2]

Lε[um]v = −∇ · (µε[um]∇v), (3)

where

µε[um] =
1√

|∇um|2 + ε2
, ε > 0. (4)

Thus, for each k

Lε[um]ϕk = λkϕk in Ω,

ϕk = 0 on Γ,
(5)

where (λk)k≥1 is the nondecreasing sequence of
the eigenvalue of Lε[um], each repeated accord-
ing to its multiplicity, and {ϕk} are L2-orthonormal.

3 Error analysis for ASD

So far, the remarkable ability of the ASD to
(approximately) decompose piecewise constant
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functions has only been supported by numerical
evidence. Here we present rigorous L2-error es-
timates [3] for AS approximations of piecewise
constant functions.

For simplicity, suppose that u : Ω → R is
piecewise constant with K inclusions,

u(x) =
K∑

k=1

αkχAk
(x), αk 6= 0, (6)

where χAk
are the characteristic functions of

Lipschitz domains Ak ⊂⊂ Ω with connected but
mutually disjoint boundaries. Now, let uh ∈ Vh
be the (standard) interpolant of u in an H1-
conforming, piecewise polynomial Pr-FE space
Vh associated with a mesh Th of size h, where
the family {Th}h is regular and quasi-uniform.

Suppose {ϕk}Kk=1 ⊂ Vh are the (discrete ap-
proximate) eigenfunctions obtained by the Galerkin
FE formulation of the eigenvalue problem (5)
with um replaced by uh. Then the AS projection
Πε
K [uh] : L2(Ω)→ ΦK into the AS space ΦK =

span{ϕk}Kk=1 is the standard L
2-projection given

by

〈v −Πε
K [uh]v, ϕ〉 = 0, ∀ϕ ∈ ΦK . (7)

We have the following error estimate [3]:

Theorem 1 For each v ∈ span{χAk
}Kk=1 there

exists a constant C = C(v), such that for every
ε, h > 0 sufficiently small,

‖v −Πε
K [uh]v‖L2(Ω) ≤ C

√
ε+ h. (8)

In particular, the above is true for v = u.

Remark 2 The estimate of Theorem 1 holds
true in a more general setting [3] where the FE
formulation is replaced by a Galerkin formula-
tion in a closed subspace Vδ ⊂ H1 and the FE-
interpolant uh is replaced by a more general ad-
missible approximation uδ ∈ Vδ. Moreover, u
also need not be constant near Γ and the weight
function (4) can be replaced by a more general
function.

Consider the piecewise constant medium u
shown in Figure 1 (left), which consists ofK = 3
characteristic functions (obstacles) in Ω = (0, 1)2.
To verify the convergence rate in Theorem 1 for
h → 0 and fixed ε = 10−8, we compute the
approximation error (8) using P1-FE on a reg-
ular, uniform triangular mesh whose vertices lie
on an equidistant Cartesian grid with mesh size
h. The right frame of Figure 1 corroborates the
expected error decay of O(

√
h).
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Figure 2: (left) reconstructed medium with 20%
noise; (right) misfit referring to (2).

4 Numerical Results

Here we apply the ASI approach, described in
Section 2, to solve a time-dependent inverse scat-
tering problem for the (unknown) medium u
shown in Figure 1, given the scattered wave data
on Γ from 32 evenly distributed sources near the
boundary with 20% added noise. The forward
problem (1) is discretized in Ω = (0, 1)2 until
time T = 1.5 using P2-FE (with mass-lumping)
in space and the (standard, explicit, second-
order) leapfrog method in time. In Figure 2,
we display the reconstructed medium after 18
ASI iterations, when the discrepancy principle is
satisfied: Starting from the homogeneous back-
ground, the ASI algorithm recovers u(x) both
in shape and magnitude quite accurately. In-
stead of a grid-based discrete FE representation
with 250′000 unknowns, the dimension of the
search space in the ASI approach never exceeds
Kmax = 100 during the entire inversion. At
each iteration, the first few eigenfunctions ϕk
are computed with P1-FE on the same FE mesh
using a cheap Lanczos method for symmetric
and positive definite eigenvalue problems.
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