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Abstract

The purpose of this note is to study some spec-
tral properties of the Dirichlet Laplacian defined
on a two-dimensional infinite band subjected to
a "shear". We give geometric conditions leading
to a Hardy inequality and the absence of a dis-
crete eigenvalue. The second part is devoted to
the discussion of the presence of discrete spec-
trum. Apart from a few details, the bulk of
proof can be found in [1].
Keywords: Quantum waveguide, sheared band,
Hardy inequality.

1 Introduction

Recent work has shown that certain deforma-
tions of a straight waveguide have a repulsive
effect, i.e. the absence of a discrete spectrum of
the corresponding Dirichlet Laplacian; see for
example BHK, BH, Kre. We want to study this
fact for a two-dimensional quantum waveguide
subjected to shear. To this end we introduce
the following model. Let f : R→ R such that
(h) the derivative f ′ ∈ L∞loc(R) and f ′(s) → β
as |s| → +∞, β ∈ R ∪ {±∞}.
If β ∈ R the deviation is denoted by ε := f ′(s)−
β. Let d > 0. Consider the domain in R2 (see
Figure 1):

Ω = Ωf = {(x, y) ∈ R2; f(x) < y < f(x) + d}
We are focusing on the spectral analysis of

the "Dirichlet Laplacian " denoted by −∆D in
L2(Ω) i.e. the self-adjoint operator in L2(Ω) de-
fined from the quadratic form

QD[ψ] =

∫

Ω
|∇ψ(x, y)|2dxdy, ψ ∈ H1

0(Ω).

For finite β it is convenient to use an appropriate
change of variables:

(s, t) ∈ Ω0 −→ L(s, t) = (s, f(s) + t) ∈ Ω

Denote byHf the operator obtained in the curvi-
linear coordinates (s, t), it is associated to the
following quadratic form :

q[ϕ] = ‖(∂s − f ′∂t)ϕ‖2 + ‖∂tϕ‖2;ϕ ∈ D(q) (1)

By direct calculation we see that q is closed
on D(q) = H1

0 (Ω0). Let us give the location
of the essential spectrum of the operator Hf

which is a necessary step for our purpose. Let
E1(β) =

(
1 + β2

)
E1, where E1 =

(
π
d

)2 is the
first transverse mode: −∂2

t χ(t) = E1χ(t),

Theorem 1 Suppose (h) holds. Then,
i) if β ∈ R. Then, σess(Hf ) = [E1(β),+∞)
ii) if f ′ → ±∞. Then σess(H) = ∅.
The proof of the Theorem 1 can be found in
[1]. Note that for β = ±∞ the spectrum of the
operator Hf is purely discrete so from now we
only consider the finite β case.

2 Hardy inequalities

Theorem 2 (repulsive shearing) Suppose (h)
holds, ε a nonzero function, β ∈ R, and βε ≥ 0.
Then there exists c > 0 s.t.

−∆D − E1(β) ≥ c

1 + s2
(2)

holds in the quadratic form sense in L2(Ω).

Let us give few remarks. The last theorem im-
plies the non existence of discrete eigenvalue for
Hf . If ε = 0, a limiting argument show that (2)
cannot be true see [2]. Finally, note also that
the presence of positive term in the r.h.s of (2)
shows that the result is stable by adding a small
perturbation to Hf of order 0.

The proof of the Theorem is given in [1]. The
key point comes from the so called "the ground
state decomposition", it is the following identity
which is valid for every finite β and ε ∈ L∞loc(R).
Let ψ ∈ C∞0 (Ω0), then

q[ψ]−E1(β)‖ψ‖2 = ‖∂sψ−ε∂tψ−βχ∂t(χ−1ψ)‖2

+ ‖χ∂t(χ−1ψ)‖2

+

∫

Ω0

βε

(
E1(β) + (

χ′

χ
)2

)
|ψ|2 (3)

Then by (3), since the r.h.s. is positive if βε ≥ 0
then the associated operator Hf has no spec-
trum below E1(β) even for ε = 0.
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Outline

0. Spectral-geometric motivations

1. Twisted tubes 2. Sheared ribbons 3. Ruled strips

Figure 1: sheared nanoribbon

3 Discrete spectrum

Theorem 3 (Attractive shearing) Suppose that
ε is a nonzero function, ε2 + 2βε ∈ L1(R) and
either one of the following conditions is satisfied,

∫

R
(ε2 + 2βε) < 0 (4)

ε ∈W 1
loc(R), ε 6= −2β and

∫

R
(ε2 + 2βε) = 0

(5)
Then σd(Hf ) 6= ∅.

The criterion (4) of existence of discrete eigen-
values has been used in [5] for a different model.
In fact here we prove more i.e. the discrete
eigenvalues persist even when (4) is saturated
(see (5)). This last result is more delicate to ob-
tain and we need here an additional condition
on the regularity of the deviation. Of course
this result is consistent with Theorem 2 since
for repulsive shearing assumptions (4) and (5)
are clearly not satisfied.

4 Large coupling

We close this work, by considering a particular
case namely f is s.t. f ′(x) = β + αε(x), β > 0,
α < 0, ε is a bounded positive function with
support [0, 1]. Then we get:

Theorem 4 Suppose that there exist 0 < c1 ≤
ε(x) ≤ c2, x ∈ [0, 1]. Then for α < 0 and large
σd(Hf ) = ∅.
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