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Sheared nanoribbons
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Abstract

The purpose of this note is to study some spec-
tral properties of the Dirichlet Laplacian defined
on a two-dimensional infinite band subjected to
a "shear". We give geometric conditions leading
to a Hardy inequality and the absence of a dis-
crete eigenvalue. The second part is devoted to
the discussion of the presence of discrete spec-
trum. Apart from a few details, the bulk of
proof can be found in [1].
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1 Introduction

Recent work has shown that certain deforma-
tions of a straight waveguide have a repulsive
effect, i.e. the absence of a discrete spectrum of
the corresponding Dirichlet Laplacian; see for
example BHK, BH, Kre. We want to study this
fact for a two-dimensional quantum waveguide
subjected to shear. To this end we introduce
the following model. Let f: R — R such that
(h) the derivative f' € LS (R) and f'(s) = B
as |s| = 400, f € RU{£o0}.
If 8 € R the deviation is denoted by € := f/(s)—
B. Let d > 0. Consider the domain in R? (see
Figure 1):

Q=0 = {(2,y) € R f(z) < y < f(z) + d}

We are focusing on the spectral analysis of

the "Dirichlet Laplacian " denoted by —Ap in

L2(Q) i.e. the self-adjoint operator in L2() de-
fined from the quadratic form

Qb)) = /Q Ve, y)Pdedy, € HY(Q).

For finite 3 it is convenient to use an appropriate
change of variables:

(s,t) € Qo —> L(s,t) = (s, f(s) +1) € Q

Denote by Hy the operator obtained in the curvi-
linear coordinates (s,t), it is associated to the
following quadratic form :

ale] = (105 — f'o)¢l? + |13ell*; 0 € D(q) (1)

By direct calculation we see that ¢ is closed
on D(q) = H}(Q). Let us give the location
of the essential spectrum of the operator Hj
which is a necessary step for our purpose. Let
Ei(8) = (1+ f2) E1, where By = (5)? is the
first transverse mode: —02x(t) = E1x(t),

Theorem 1 Suppose (h) holds. Then,
i) if B € R. Then, oess(Hy) = [E1(B), +00)
ii) if f' — +oo. Then oess(H) = 0.

The proof of the Theorem 1 can be found in
[1]. Note that for 5 = foo the spectrum of the
operator Hy is purely discrete so from now we
only consider the finite 3 case.

2 Hardy inequalities

Theorem 2 (repulsive shearing) Suppose (h)
holds, € a nonzero function, 8 € R, and Se > 0.
Then there exists ¢ > 0 s.t.

C
“Ap — >
Ap — Ei(B) > T2

(2)
holds in the quadratic form sense in L?(§2).

Let us give few remarks. The last theorem im-
plies the non existence of discrete eigenvalue for
Hy. If e = 0, a limiting argument show that (2)
cannot be true see [2|. Finally, note also that
the presence of positive term in the r.h.s of (2)
shows that the result is stable by adding a small
perturbation to Hy of order 0.

The proof of the Theorem is given in [1]. The
key point comes from the so called "the ground
state decomposition", it is the following identity
which is valid for every finite 8 and € € LS. (R).
Let ¢ € C§°(Qp), then

qW]—E1(B)|[0]? = || 0stp—edip—Bxdr(x " 0)|?
+ X8 (x )2

v [ g (B + EP )k

Then by (3), since the r.h.s. is positive if Se > 0
then the associated operator Hy has no spec-
trum below Ej () even for € = 0.
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Figure 1: sheared nanoribbon
3 Discrete spectrum References
Theorem 3 (Attractive shearing) Suppose that  [1] Abdou-Soimadou H, Briet P., Krejé¢ifik D.

€ is a nonzero function, €2 + 2Be € LY(R) and
either one of the following conditions is satisfied,

/(52 +2pe) <0 (4)
R

e € WL (R),e # —28 and /(52 +2Be) =0

’ (5)
Then oq(Hy) # 0.

The criterion (4) of existence of discrete eigen-
values has been used in [5] for a different model.
the discrete
eigenvalues persist even when (4) is saturated
(see (5)). This last result is more delicate to ob-
tain and we need here an additional condition
on the regularity of the deviation. Of course
this result is consistent with Theorem 2 since
for repulsive shearing assumptions (4) and (5)
are clearly not satisfied.

In fact here we prove more i.e.

4 Large coupling

We close this work, by considering a particular
case namely f is s.t. f'(z) = 8+ ae(x), B > 0,
a < 0, € is a bounded positive function with
support [0, 1]. Then we get:

Theorem 4 Suppose that there exist 0 < ¢1 <
e(x) < co,  €10,1]. Then for a < 0 and large
oa(Hy) = 0.
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