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Abstract

We propose a numerical factorization of the
propagation operator in a privileged direction
for linearized Navier-Stokes equations. From
the latter, One-Way models such as the True
Amplitude formalism and the Bremmer series
can be derived.
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1 Introduction

The One-Way (OW) approach is an effective
tool to compute wave propagation in a direction
of interest. For example, such a method could
be used to study the laminar-turbulent transi-
tion zone in boundary layers. However, the con-
struction of this type of method in this context
remains a challenge due to complex operators
involved.

Towne & Colonius [1] have overcome this dif-
ficulty for slowly varying flows by proposing a
purely numerical OW method based on a non-
reflecting boundary condition applied to the Eu-
ler and Navier-Stokes equations.

We extend these works by proposing a new
factorization of the propagation operator which
allows a sorting of the modes according to their
direction and accessing to a refraction /reflection
operator. We can then derive OW models with
broader validity, such as True Amplitude OW
(TAOW) or Bremmer series.

2 Linearized Navier-Stokes equations

We are interested in computing with a low nu-
merical cost the time-harmonic wave propaga-
tion in a complex flow, and considering a pre-
ferred direction: the z-axis in this presentation.
To do so, we start with a 2D linearized model
of the Navier-Stokes equations around a mean
flow where the unknown fluctuation vector is
q= (7,u,v,p)" with 7, (u,?) and p being the
specific volume, velocity and pressure perturba-
tions, respectively. Using standard hypothesis
in wave propagation, the second derivatives in

x are neglected. We next process as in [1]| by
isolating the term 8% and by performing a first
discretization in the transverse direction y (a
compact high-order finite difference scheme in
our case). So, we get the following matrix ODE

in z-variable:

dq . ~
A@ = (iwI - B,b, — B,,D,, — C)q (1)

B

with D, and D, the first and second order dis-
crete derivative operators in y-variable. All the
matrices are of size (4N,) x (4N,) with N, the
number of discretization points in the transverse
direction y. The matrix A is assumed to be di-
agonalizable, i.e. A = T AT ! and invertible.
If it contains singularities, they can be treated
by extraction.

The equation (1) can be rewritten in terms
of characteristic variables ¢ = T~ q:

dg _

M) )

where the propagation operator M is defined by:

~ T
M=A"'T BT - T_ld—.
dx

3 New factorization of M

The construction of OW methods to solve (2) re-
quires identifying the left and right-going modes
contained in the propagation operator. A nat-
ural way is to perform a diagonalization of M
and to analyze the behavior of the eigenvalues
to find the different sets of modes (Briggs’ crite-
rion). Unfortunately, this approach is generally
costly in terms of computational resources, espe-
cially because M is z-dependent. To bypass this
problem, we propose to construct a new decom-
position of M based on the concept of high-order
non-reflecting boundary conditions. The start-
ing point is this remark: a strict diagonalization
of M is not needed to realize a OW decoupling.
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More precisely, by using this type of matrices

N-1 ' ‘
ZrN = M — i/ 1)"'(M — i 1)

j=0

N-1 ) '
ZhN = (M =g, 1) (M — i’ I)

j=0

with ( i, Bi)j:()’._,,N_l a set of parameters, the
following theorem can be proven.

Theorem 1 Let VDU be a diagonalization of
M where D contains the N+ eigenvalues i
corresponding to the +x direction. The param-
eters ((%.)jen satisfy the condition (C):

lim RY¥(ay)=0and lim RM(a_ )= +oo
N—+o00 N—+o0

N-1 Y
with RN (o) == [ | Bj
=0 a—pL

We introduce the matrix

-1
I,N I,N

<Z++> Zy-

(z2Y) g I

_Ej,N L I++

where the subscripts denote the number of rows
and columns (N4 or N_) of each block.

_ The following decoupling result holds: for
DY := UMM (UM)7!, let D := limy_, ;oo DV,

5 U lD Uy 0
0 UlD U _

This theorem implies that by choosing a fi-
nite number of parameters 3., we can construct

"N _ 17N rTNy—1 DY €
DY =U"M((UY) :[ ++ ~ \ ] (3)
€ DZ_

where f)f 4 and DY_ are two block matri-
ces containing the information about the right-
going and left-going eigenvalues of M, respec-
tively and e represents the residuals of the ap-
proximations, which will be neglected.

This choice is guided by (C). It is easy to find
such kind of family, for example, Bifl =+ +
ij) for j € N* but the convergence of the method
can be greatly improved by using parameters
nearer to the spectrum of M. In practice, we use
some a priori information on the spectrum of M
such as the branch position of evanescent modes,
the range of the convective modes branch etc.,
which are deduced from analytical results for

simple mean flows [1] or from a numerical local
stability analysis (see example below).

By using the factorization (3), the equation
(2) can be written in terms of OW variables ¢ =

UNg:
a¥

dx

with W& .= —UgNdvVZ dV the refraction /reflection
matrix. Finally, we construct several OW prop-
agation models: for example, right-going OW
equations are derived as follows

=Dy + Wy

d
;p; DY, b, + oW 9, and _ =
with 6 = 0 for the standard OW and § =

for the TAOW. In the case of Bremmer series,
we need to solve right and left OW equations
iteratively until convergence.

4 Numerical example
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Figure 1: Convergence on the spectrum: N =7

We consider a duct of height h and a mean
flow verifying (7, p) constant and the velocity is:

u(y) = 4Vmam% (1 — %) and v =0
where V4. is the maximum axial velocity.

In Fig. 1, a corresponds to the exact op-
erator spectrum, Ay and A_ to the spectra of
the operators DY 2, and DN_, respectively. We
see a good restitution of the spectrum from few
B+ coefficients. During the congress, we will
present numerical results obtained by some OW
methods based on this new factorization.
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