One-Way methods for wave propagation in complex flows

Maëlys Ruello ${ }^{1, *}$, Clément Rudel ${ }^{1}$, Sébastien Pernet ${ }^{1}$, Jean-Philippe Brazier ${ }^{1}$
${ }^{1}$ ONERA The French Aerospace Lab, Toulouse, France
*Email: Maelys.Ruello@onera.fr

Abstract

We propose a numerical factorization of the propagation operator in a privileged direction for linearized Navier-Stokes equations. From the latter, One-Way models such as the True Amplitude formalism and the Bremmer series can be derived.

Keywords: Wave propagation, Hydrodynamic waves, One-Way methods.

1 Introduction

The One-Way (OW) approach is an effective tool to compute wave propagation in a direction of interest. For example, such a method could be used to study the laminar-turbulent transition zone in boundary layers. However, the construction of this type of method in this context remains a challenge due to complex operators involved.

Towne \& Colonius [1] have overcome this difficulty for slowly varying flows by proposing a purely numerical OW method based on a nonreflecting boundary condition applied to the Euler and Navier-Stokes equations.

We extend these works by proposing a new factorization of the propagation operator which allows a sorting of the modes according to their direction and accessing to a refraction/reflection operator. We can then derive OW models with broader validity, such as True Amplitude OW (TAOW) or Bremmer series.

2 Linearized Navier-Stokes equations

We are interested in computing with a low numerical cost the time-harmonic wave propagation in a complex flow, and considering a preferred direction: the x-axis in this presentation. To do so, we start with a 2D linearized model of the Navier-Stokes equations around a mean flow where the unknown fluctuation vector is $\widetilde{\mathbf{q}}=(\widetilde{\nu}, \widetilde{u}, \widetilde{v}, \widetilde{p})^{T}$ with $\widetilde{\nu},(\widetilde{u}, \widetilde{v})$ and \widetilde{p} being the specific volume, velocity and pressure perturbations, respectively. Using standard hypothesis in wave propagation, the second derivatives in
x are neglected. We next process as in [1] by isolating the term $\frac{\partial}{\partial x}$ and by performing a first discretization in the transverse direction y (a compact high-order finite difference scheme in our case). So, we get the following matrix ODE in x-variable:

$$
\begin{equation*}
\mathbf{A} \frac{d \widetilde{\mathbf{q}}}{d x}=\underbrace{\left(i \omega \mathbf{I}-\mathbf{B}_{y} \mathbf{D}_{y}-\mathbf{B}_{y y} \mathbf{D}_{y y}-\mathbf{C}\right)}_{\mathbf{B}} \widetilde{\mathbf{q}} \tag{1}
\end{equation*}
$$

with \mathbf{D}_{y} and $\mathbf{D}_{y y}$ the first and second order discrete derivative operators in y-variable. All the matrices are of size $\left(4 N_{y}\right) \times\left(4 N_{y}\right)$ with N_{y} the number of discretization points in the transverse direction y. The matrix \mathbf{A} is assumed to be diagonalizable, i.e. $\mathbf{A}=\mathbf{T} \widetilde{\mathbf{A}} \mathbf{T}^{-1}$ and invertible. If it contains singularities, they can be treated by extraction.

The equation (1) can be rewritten in terms of characteristic variables $\phi=\mathbf{T}^{-1} \widetilde{\mathbf{q}}$:

$$
\begin{equation*}
\frac{d \phi}{d x}=\mathbf{M}(x) \phi \tag{2}
\end{equation*}
$$

where the propagation operator \mathbf{M} is defined by:

$$
\mathbf{M}=\widetilde{\mathbf{A}}^{-1} \mathbf{T}^{-1} \mathbf{B} \mathbf{T}-\mathbf{T}^{-1} \frac{d \mathbf{T}}{d x}
$$

3 New factorization of M

The construction of OW methods to solve (2) requires identifying the left and right-going modes contained in the propagation operator. A natural way is to perform a diagonalization of \mathbf{M} and to analyze the behavior of the eigenvalues to find the different sets of modes (Briggs' criterion). Unfortunately, this approach is generally costly in terms of computational resources, especially because \mathbf{M} is x-dependent. To bypass this problem, we propose to construct a new decomposition of \mathbf{M} based on the concept of high-order non-reflecting boundary conditions. The starting point is this remark: a strict diagonalization of \mathbf{M} is not needed to realize a OW decoupling.

More precisely, by using this type of matrices

$$
\begin{aligned}
\mathbf{Z}^{r, N} & :=\prod_{j=0}^{N-1}\left(\mathbf{M}-i \beta_{-}^{j} \mathbf{I}\right)^{-1}\left(\mathbf{M}-i \beta_{+}^{j} \mathbf{I}\right) \\
\mathbf{Z}^{l, N} & :=\prod_{j=0}^{N-1}\left(\mathbf{M}-i \beta_{+}^{j} \mathbf{I}\right)^{-1}\left(\mathbf{M}-i \beta_{-}^{j} \mathbf{I}\right)
\end{aligned}
$$

with $\left(\beta_{+}^{j}, \beta_{-}^{j}\right)_{j=0, \ldots, N-1}$ a set of parameters, the following theorem can be proven.

Theorem 1 Let VDU be a diagonalization of \mathbf{M} where \mathbf{D} contains the $N_{ \pm}$eigenvalues $i \alpha_{ \pm}$ corresponding to the $\pm x$ direction. The parameters $\left(\beta_{ \pm}^{j}\right)_{j \in \mathbb{N}}$ satisfy the condition (C) :
$\lim _{N \rightarrow+\infty} R^{N}\left(\alpha_{+}\right)=0$ and $\lim _{N \rightarrow+\infty} R^{N}\left(\alpha_{-}\right)=+\infty$
with $R^{N}(\alpha):=\prod_{j=0}^{N-1}\left|\frac{\alpha-\beta_{+}^{j}}{\alpha-\beta_{-}^{j}}\right|$.
We introduce the matrix

$$
\widetilde{\mathbf{U}}^{N}:=\left(\begin{array}{cc}
\mathbf{I}_{++} & \\
\left(\mathbf{Z}_{++}^{l, N}\right)^{-1} \mathbf{Z}_{+-}^{l, N} \\
\left(\mathbf{Z}_{--}^{r, N}\right)^{-1} \mathbf{Z}_{-+}^{r, N} & \mathbf{I}_{--}
\end{array}\right)
$$

where the subscripts denote the number of rows and columns (N_{+}or N_{-}) of each block.

The following decoupling result holds: for $\widetilde{\mathbf{D}}^{N}:=\widetilde{\mathbf{U}}^{N} \mathbf{M}\left(\widetilde{\mathbf{U}}^{N}\right)^{-1}$, let $\widetilde{\mathbf{D}}:=\lim _{N \rightarrow+\infty} \widetilde{\mathbf{D}}^{N}$,

$$
\widetilde{\mathbf{D}}=\left(\begin{array}{cc}
\mathbf{U}_{++}^{-1} \mathbf{D}_{++} \mathbf{U}_{++} & \mathbf{0} \\
\mathbf{0} & \mathbf{U}_{--}^{-1} \mathbf{D}_{--} \mathbf{U}_{--}
\end{array}\right)
$$

This theorem implies that by choosing a finite number of parameters $\beta_{ \pm}^{j}$, we can construct

$$
\widetilde{\mathbf{D}}^{N}=\widetilde{\mathbf{U}}^{N} \mathbf{M}\left(\widetilde{\mathbf{U}}^{N}\right)^{-1}=\left[\begin{array}{cc}
\widetilde{\mathbf{D}}_{++}^{N} & \varepsilon \tag{3}\\
\varepsilon & \widetilde{\mathbf{D}}_{--}^{N}
\end{array}\right]
$$

where $\widetilde{\mathbf{D}}_{++}^{N}$ and $\widetilde{\mathbf{D}}_{--}^{N}$ are two block matrices containing the information about the rightgoing and left-going eigenvalues of \mathbf{M}, respectively and ε represents the residuals of the approximations, which will be neglected.

This choice is guided by (C). It is easy to find such kind of family, for example, $\beta_{ \pm}^{j-1}= \pm(j+$ $i j)$ for $j \in \mathbb{N}^{*}$ but the convergence of the method can be greatly improved by using parameters nearer to the spectrum of \mathbf{M}. In practice, we use some a priori information on the spectrum of \mathbf{M} such as the branch position of evanescent modes, the range of the convective modes branch etc., which are deduced from analytical results for
simple mean flows [1] or from a numerical local stability analysis (see example below).

By using the factorization (3), the equation (2) can be written in terms of OW variables $\boldsymbol{\psi}=$ $\widetilde{\mathbf{U}}^{N} \boldsymbol{\phi}$:

$$
\frac{d \boldsymbol{\psi}}{d x}=\widetilde{\mathbf{D}}^{N} \boldsymbol{\psi}+\mathbf{W}^{N} \boldsymbol{\psi}
$$

with $\mathbf{W}^{N}:=-\widetilde{\mathbf{U}}^{N} \frac{d \widetilde{\mathbf{V}}^{N}}{d x}$ the refraction/reflection matrix. Finally, we construct several OW propagation models: for example, right-going OW equations are derived as follows

$$
\frac{d \boldsymbol{\psi}_{+}}{d x}=\widetilde{\mathbf{D}}_{++}^{N} \boldsymbol{\psi}_{+}+\delta \mathbf{W}_{++}^{N} \boldsymbol{\psi}_{+} \text {and } \boldsymbol{\psi}_{-}=\mathbf{0}
$$

with $\delta=0$ for the standard OW and $\delta=1$ for the TAOW. In the case of Bremmer series, we need to solve right and left OW equations iteratively until convergence.

4 Numerical example

Figure 1: Convergence on the spectrum: $N=7$
We consider a duct of height h and a mean flow verifying $(\bar{\nu}, \bar{p})$ constant and the velocity is:

$$
\bar{u}(y)=4 V_{\max } \frac{y}{h}\left(1-\frac{y}{h}\right) \text { and } \bar{v}=0
$$

where $V_{\max }$ is the maximum axial velocity.
In Fig. 1, α corresponds to the exact operator spectrum, λ_{+}and λ_{-}to the spectra of the operators $\widetilde{\mathbf{D}}_{++}^{N}$ and $\widetilde{\mathbf{D}}_{--}^{N}$, respectively. We see a good restitution of the spectrum from few $\beta_{ \pm}$coefficients. During the congress, we will present numerical results obtained by some OW methods based on this new factorization.

References

[1] A. Towne and T. Colonius, One-Way spatial integration of hyperbolic equations, Journal of Computational Physics, 300 (2015), pp. $844-861$.

