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Abstract

We propose a numerical factorization of the
propagation operator in a privileged direction
for linearized Navier-Stokes equations. From
the latter, One-Way models such as the True
Amplitude formalism and the Bremmer series
can be derived.
Keywords: Wave propagation, Hydrodynamic
waves, One-Way methods.

1 Introduction

The One-Way (OW) approach is an effective
tool to compute wave propagation in a direction
of interest. For example, such a method could
be used to study the laminar-turbulent transi-
tion zone in boundary layers. However, the con-
struction of this type of method in this context
remains a challenge due to complex operators
involved.

Towne & Colonius [1] have overcome this dif-
ficulty for slowly varying flows by proposing a
purely numerical OW method based on a non-
reflecting boundary condition applied to the Eu-
ler and Navier-Stokes equations.

We extend these works by proposing a new
factorization of the propagation operator which
allows a sorting of the modes according to their
direction and accessing to a refraction/reflection
operator. We can then derive OW models with
broader validity, such as True Amplitude OW
(TAOW) or Bremmer series.

2 Linearized Navier-Stokes equations

We are interested in computing with a low nu-
merical cost the time-harmonic wave propaga-
tion in a complex flow, and considering a pre-
ferred direction: the x-axis in this presentation.
To do so, we start with a 2D linearized model
of the Navier-Stokes equations around a mean
flow where the unknown fluctuation vector is
q̃ = (ν̃, ũ, ṽ, p̃)T with ν̃ , (ũ, ṽ) and p̃ being the
specific volume, velocity and pressure perturba-
tions, respectively. Using standard hypothesis
in wave propagation, the second derivatives in

x are neglected. We next process as in [1] by
isolating the term ∂

∂x and by performing a first
discretization in the transverse direction y (a
compact high-order finite difference scheme in
our case). So, we get the following matrix ODE
in x-variable:

A
dq̃

dx
= (iωI−ByDy −ByyDyy −C)︸ ︷︷ ︸

B

q̃ (1)

with Dy and Dyy the first and second order dis-
crete derivative operators in y-variable. All the
matrices are of size (4Ny)× (4Ny) with Ny the
number of discretization points in the transverse
direction y. The matrix A is assumed to be di-
agonalizable, i.e. A = TÃT−1 and invertible.
If it contains singularities, they can be treated
by extraction.

The equation (1) can be rewritten in terms
of characteristic variables ϕ = T−1 q̃:

dϕ

dx
= M(x)ϕ (2)

where the propagation operator M is defined by:

M = Ã−1T−1BT−T−1dT

dx
.

3 New factorization of M

The construction of OW methods to solve (2) re-
quires identifying the left and right-going modes
contained in the propagation operator. A nat-
ural way is to perform a diagonalization of M
and to analyze the behavior of the eigenvalues
to find the different sets of modes (Briggs’ crite-
rion). Unfortunately, this approach is generally
costly in terms of computational resources, espe-
cially because M is x-dependent. To bypass this
problem, we propose to construct a new decom-
position of M based on the concept of high-order
non-reflecting boundary conditions. The start-
ing point is this remark: a strict diagonalization
of M is not needed to realize a OW decoupling.
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More precisely, by using this type of matrices

Zr,N :=
N−1∏

j=0

(M− iβj
−I)

−1(M− iβj
+I)

Zl,N :=
N−1∏

j=0

(M− iβj
+I)

−1(M− iβj
−I)

with (βj
+, β

j
−)j=0,...,N−1 a set of parameters, the

following theorem can be proven.

Theorem 1 Let VDU be a diagonalization of
M where D contains the N± eigenvalues iα±
corresponding to the ±x direction. The param-
eters (βj

±)j∈N satisfy the condition (C):

lim
N→+∞

RN (α+) = 0 and lim
N→+∞

RN (α−) = +∞

with RN (α) :=
N−1∏
j=0

∣∣∣∣
α−βj

+

α−βj
−

∣∣∣∣.
We introduce the matrix

ŨN :=


 I++

(
Zl,N
++

)−1
Zl,N
+−(

Zr,N
−−

)−1
Zr,N
−+ I−−




where the subscripts denote the number of rows
and columns (N+ or N−) of each block.

The following decoupling result holds: for
D̃N := ŨN M (ŨN )−1, let D̃ := limN→+∞ D̃N ,

D̃ =

(
U−1

++D++U++ 0

0 U−1
−−D−−U−−

)

This theorem implies that by choosing a fi-
nite number of parameters βj

±, we can construct

D̃N = ŨN M (ŨN )−1 =

[
D̃N

++ ε

ε D̃N
−−

]
(3)

where D̃N
++ and D̃N

−− are two block matri-
ces containing the information about the right-
going and left-going eigenvalues of M, respec-
tively and ε represents the residuals of the ap-
proximations, which will be neglected.

This choice is guided by (C). It is easy to find
such kind of family, for example, βj−1

± = ±(j +
ij) for j ∈ N∗ but the convergence of the method
can be greatly improved by using parameters
nearer to the spectrum of M. In practice, we use
some a priori information on the spectrum of M
such as the branch position of evanescent modes,
the range of the convective modes branch etc.,
which are deduced from analytical results for

simple mean flows [1] or from a numerical local
stability analysis (see example below).

By using the factorization (3), the equation
(2) can be written in terms of OW variables ψ =
ŨNϕ:

dψ

dx
= D̃Nψ +WNψ

with WN := −ŨN dṼN

dx the refraction/reflection
matrix. Finally, we construct several OW prop-
agation models: for example, right-going OW
equations are derived as follows

dψ+

dx
= D̃N

++ψ+ + δWN
++ψ+ and ψ− = 0

with δ = 0 for the standard OW and δ = 1
for the TAOW. In the case of Bremmer series,
we need to solve right and left OW equations
iteratively until convergence.

4 Numerical example
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Figure 1: Convergence on the spectrum: N = 7

We consider a duct of height h and a mean
flow verifying (ν, p) constant and the velocity is:

u(y) = 4Vmax
y

h

(
1− y

h

)
and v = 0

where Vmax is the maximum axial velocity.
In Fig. 1, α corresponds to the exact op-

erator spectrum, λ+ and λ− to the spectra of
the operators D̃N

++ and D̃N
−−, respectively. We

see a good restitution of the spectrum from few
β± coefficients. During the congress, we will
present numerical results obtained by some OW
methods based on this new factorization.
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