On corner matrices for high order DDMs

Bruno Després ${ }^{1, *}$, Anouk Nicolopoulos ${ }^{2}$, Bertrand Thierry ${ }^{3}$
${ }^{1}$ LJLL, Sorbonne university, Paris, France
${ }^{2}$ University of Zurich, Zurich, Switzerland
${ }^{3}$ Somewhere in the States
*Email: bruno.despres@sorbonne-universite.fr

Abstract

Our problem concerns the construction of domain decomposition methods (DDM) for the model Helmholtz equation with high order transmission conditions (2nd order TC in our case) and cross-points. A compatibility condition is formulated for cross-points matrices so that the DDM is proved to be convergent under general conditions. The proof is based on a new global energy formulated on the skeleton of the DDM decomposition. The equivalence of the new energy with the H^{1} nom on the skeleton of the DDM decomposition is shown. The extension at any order is briefly discussed.

Keywords: DDM, second-order TC, cross-points.

1 Introduction

We consider a general family of domain decomposition iterative processes:

- Initialize $u_{i}^{0} \in H^{1}\left(\Omega_{i}\right)$ for all i.
- For $p \in \mathbb{N}$, compute $u_{i}^{p+1} \in H^{1}\left(\Omega_{i}\right)$ for all i

$$
\left\{\begin{align*}
\left(\Delta+\omega^{2}\right) u_{i}^{p+1} & =f \text { in } \Omega_{i}, \forall i \tag{1}\\
\left(\partial_{\mathbf{n}}-\mathbf{i} \omega T\right) u_{\Sigma}^{p+1} & =-\left(\Pi \partial_{\mathbf{n}}+\mathbf{i} \omega T \Pi\right) u_{\Sigma}^{p} \\
\left(\partial_{\mathbf{n}}-\mathbf{i} \omega\right) u_{\Gamma}^{p+1} & =0 \text { on } \Gamma
\end{align*}\right.
$$

where the second equation denotes a possibly global transmission condition on the skeleton Σ of the DDM. The operator Π denotes the natural exchange operator on Σ.
We report hereafter on recent advances [5] (to compare with $[1-3]$) where the operator T comes from a second order approximation of transparent condition on a flat boundary in 2D. That is we desire that the transmission equation T on Σ in (1) models

$$
\begin{align*}
& \left(1-\frac{1}{2 \omega^{2}} \partial_{\mathbf{t}_{i} \mathbf{t}_{i}}\right) \partial_{\mathbf{n}_{i}} u_{i j}^{p+1}-\mathbf{i} \omega u_{i j}^{p+1} \\
& =-\left(1-\frac{1}{2 \omega^{2}} \partial_{\mathbf{t}_{j} \mathbf{t}_{j}}\right) \partial_{\mathbf{n}_{j}} u_{j i}^{p}-\mathbf{i} \omega u_{j i}^{p} \text { on } \Sigma_{i j} \tag{2}
\end{align*}
$$

where $\Sigma_{i j}=\Sigma_{j i}$ is the part of Σ in between Ω_{i} and Ω_{j}. Such a requirement is algorithmically
natural since second order transmission operators are already implemented in [4]. One notices that we have selected a second order operator which has some positivity property since the principal symbol is $1-\frac{1}{2 \omega^{2}} \partial_{\mathbf{t t}} \geq 0$ which is formally non negative.
We propose to focus on combinations of Neumann traces and Dirichlet traces under the form
$\partial_{\boldsymbol{\tau}_{i j}} \varphi_{i j}\left(\mathbf{x}_{r}\right)+\sum_{(k \ell) \in \mathcal{E}_{r}} \alpha_{i j, k \ell}^{r} \varphi_{k \ell}\left(\mathbf{x}_{r}\right)=0, \forall(i j) \in \mathcal{E}_{r}$,
where \mathcal{E}_{r} denotes the set of edges around the node/vertex $\mathbf{x}_{r}, \boldsymbol{\tau}_{i j}$ denotes a tangential derivation and $\varphi_{i j}$ denotes with simpler notations a linear rescaling of $\partial_{\mathbf{n}_{i}} u_{i j}$. All quantities (3) which concern Neumann traces and Dirichlet traces around the same node/vertex \mathbf{x}_{r} are gathered in two vectors, one for the Neumann traces and one for the Dirichlet traces. One obtains

$$
\begin{equation*}
\partial_{\boldsymbol{\tau}} \varphi_{r}+A^{r} \varphi_{r}=0 \tag{4}
\end{equation*}
$$

with the matrix $A^{r} \in \mathcal{M}_{2 d_{r}}(\mathbb{C})$ contains the unknowns coefficients $\left(\alpha_{i j, k \ell}^{r}\right)_{i j, k \ell}$.

2 Definition of T and other considerations

We model/introduce the above considerations by defining the bilinear form $a(\cdot, \cdot)$ on the skeleton: for all $\varphi, \psi \in H_{\mathrm{br}}^{1}(\Sigma)$

$$
\begin{align*}
& a(\varphi, \psi)=\sum_{i, j} \int_{\Sigma_{i j}}\left(\varphi_{i j} \overline{\psi_{i j}}+\frac{1}{2 \omega^{2}} \partial_{\mathbf{t}_{i}} \varphi_{i j} \overline{\partial_{\mathbf{t}_{i}} \psi_{i j}}\right) \mathrm{d} \sigma \\
& +\frac{1}{2 \omega^{2}} \sum_{r=1}^{N_{X}}\left(A^{r} \varphi_{r}, \psi_{r}\right)_{\mathbb{C}^{2 d_{r}}} . \tag{5}
\end{align*}
$$

We make the assumption that A^{r} has pure imaginary coefficients and that it is skew-hermitian $A^{r}=\mathbf{i} H^{r}$ where $H^{r}=\left(H^{r}\right)^{\top} \in \mathcal{M}_{2 d_{r}}(\mathbb{R})$. Since a is coercive (in particular because the transmission operator is symmetric non negative), one can define

$$
\left\{\begin{array}{l}
\text { Find } \varphi \in H_{\mathrm{br}}^{1}(\Sigma) \text { such that } \tag{6}\\
a(\varphi, \psi)=(v, \psi)_{L^{2}(\Sigma)}, \quad \forall \psi \in H_{\mathrm{br}}^{1}(\Sigma)
\end{array}\right.
$$

This problem is well posed, there exists a unique solution $\varphi \in H_{\mathrm{br}}^{1}(\Sigma)$, which denotes the skeleton endowed with the natural broken H^{1} norm.

Definition 1 Let $T: L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)$ be the operator such that $T v=\varphi$, where φ is the solution to the problem (6) for $v \in L^{2}(\Sigma)$.

The symmetric part of T admits a spectral decomposition. Let $\left(u_{n}\right)_{n \in \mathbb{N}} \subset H_{\mathrm{br}}^{1}(\Sigma)$ be the Hilbertian basis such that $\left(\frac{T+T^{*}}{2}\right) u_{n}=\lambda_{n} u_{n}$, $\left(u_{n}, u_{m}\right)_{L^{2}(\Sigma)}=\delta_{n m}$ and $\frac{2}{\operatorname{span}\left\{u_{n}\right\}_{n \in \mathbb{N}}} L^{2}(\Sigma)=$ $L^{2}(\Sigma)$. The eigenvalues satisfy $1 \geq \lambda_{n} \geq \lambda_{n+1}>$ 0 and λ_{n} converges towards zero as n goes to infinity. This leads to the definition of the operator $\left(\frac{T+T^{*}}{2}\right)^{-1}: L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)$ such that $\left(\frac{T+T^{*}}{2}\right)^{-1} u_{n}=\frac{1}{\lambda_{n}} u_{n}$ and the space $H_{T}^{1}(\Sigma):=$ $\left\{u \in L^{2}(\Sigma),\|u\|<\infty\right\}$, endowed with the norm $\||\cdot|| |$ defined as
$\|u\|:=\left(\sum_{n \geq 0} \frac{\left|\left(u, u_{n}\right)_{L^{2}(\Sigma)}\right|^{2}}{\lambda_{n}}\right)^{1 / 2}, \quad \forall u \in L^{2}(\Sigma)$.
The hermitian scalar product in $H_{T}^{1}(\Sigma)$ is denoted $\langle u, v\rangle:=\sum_{n \geq 0} \frac{1}{\lambda_{n}}\left(u, u_{n}\right)_{L^{2}(\Sigma)}{\overline{\left(v, u_{n}\right)_{L^{2}(\Sigma)}}}=$ $\left(\left(\frac{T+T^{*}}{2}\right)^{-1} u, v\right)_{L^{2}(\Sigma)}, \quad \forall u, v \in H_{T}^{1}(\Sigma)$. As a consequence, $H_{T}^{1}(\Sigma)$ is a Hilbert space. One of our main mathematical result is that $H_{T}^{1}(\Sigma)=$ $H_{\mathrm{br}}^{1}(\Sigma)$ with equivalence of norms.

Definition 2 We say that operator T is compatible if $\Pi T \Pi=T^{*}$.

Under the compatibility assumption, DDM (1) can be rewritten as

$$
\left\{\begin{align*}
\left(\Delta+\omega^{2}\right) u_{i}^{p+1} & =f \text { for all } i, \tag{7}\\
\left(\partial_{\mathbf{n}}-\mathbf{i} \omega T\right) u_{\Sigma}^{p+1} & =-\Pi\left(\partial_{\mathbf{n}}+\mathbf{i} \omega T^{*}\right) u_{\Sigma}^{p} \\
\left(\partial_{\mathbf{n}}-\mathbf{i} \omega\right) u_{\Gamma}^{p+1} & =0 \text { on } \Gamma
\end{align*}\right.
$$

Define $E^{p}:=\left\|\mid\left(\partial_{\mathbf{n}}-\mathbf{i} \omega T\right) u_{\Sigma}^{p}\right\|^{2}$.
Lemma 3 Assume that T verifies the compatibility condition from Definition 2, and that at each stage of the algorithm (7) $u^{p} \in \oplus_{i} H^{1}\left(\Omega_{i}\right)$ and $\partial_{\mathbf{n}} u_{\Sigma}^{p} \in H_{\mathrm{br}}^{1}(\Sigma)$. Then, algorithm (7) is stable (and finally convergent) in the sense that its energy is decreasing: $E^{p+1}=E^{p}-4 \omega^{2}\left\|u^{p}\right\|_{L^{2}(\Gamma)}^{2}$.

3 Extension to higher order transmission conditions

A natural question for our methodology is to model transmission conditions at higher order. Let us consider a plane wave

$$
u(\mathbf{x})=e^{\mathrm{i} \omega(\cos \theta x+\sin \theta y)}
$$

One considers the exact outgoing condition on a flat boundary $\{x=0\}$ such that $\partial_{\mathbf{n}}=\partial_{x}$: $\partial_{\mathbf{n}} u-\mathbf{i} \omega \cos \theta u=0$. For $|\sin \theta|<1$, one has the convergent expansion $\frac{1}{\cos \theta}=\left(1-\sin ^{2} \theta\right)^{-\frac{1}{2}}$ $=1+\frac{\sin ^{2} \theta}{2}+\frac{3 \sin ^{4} \theta}{8}+\frac{5 \sin ^{6} \theta}{16}+\frac{35 \sin ^{8} \theta}{128}+\ldots$ All coefficients are positive. Then a truncation at any order yields a transparent boundary condition of the corresponding order. For example, an expansion at order 6 writes
$\left(1+\frac{\sin ^{2} \theta}{2}+\frac{3 \sin ^{4} \theta}{8}+\frac{5 \sin ^{6} \theta}{16}\right) \partial_{\mathbf{n}} u-\mathbf{i} \omega u=0$. One has formally $\mathbf{i} \omega \sin \theta=\partial_{y}=\partial_{\mathbf{t}}$. One obtains the artificial condition

$$
\left(1-\frac{\partial_{\mathbf{t t}}^{2}}{2 \omega^{2}}+\frac{3 \partial_{\mathrm{ttt}}^{4}}{8 \omega^{4}}-\frac{5 \partial_{\mathbf{t t t t t t}}^{6}}{16 \omega^{6}}\right) \partial_{\mathbf{n}} u-\mathbf{i} \omega u=0 .
$$

By construction, the operator $A=1-\frac{\partial_{t}^{2}}{2 \omega^{2}}+$ $\frac{3 \partial_{\text {ttt }}^{4}}{8 \omega^{4}}-\frac{5 \partial_{\text {dttte }}^{6}}{16 \omega^{6}}$ is formally symmetric non negative. For such an operator one can defines generalized Neumann traces ($\partial_{\mathbf{t}}^{r} \varphi$ for $r=3,4,5$) and Dirichlet traces ($\partial_{\mathbf{t}}^{r} \varphi$ for $r=0,1,2$), then it is possible to define a new bilinear form (5) with generalized corner matrices. The properties of this new bilinear a and of the corresponding new transmission operator is left for further studies.

References

[1] A. Modave, C. Geuzaine, and X. Antoine. JCP , 401:109029, 2020.
[2] M. J. Gander and K. Santugini. Electron. Trans. Numer. Anal., 45:219-240, 2016.
[3] X. Claeys and E. Parolin. https://arxiv.org/abs/2003.06657, 2020.
[4] B. Thierry et al., Computer Physics Communications, 203:309-330, 2016.
[5] B. Després, A. Nicolopoulos, B. Thierry, https://hal.archives-ouvertes.fr/hal03230250, 2021.

