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Abstract

Our problem concerns the construction of do-
main decomposition methods (DDM) for the mo-
del Helmholtz equation with high order trans-
mission conditions (2nd order TC in our case)
and cross-points. A compatibility condition is
formulated for cross-points matrices so that the
DDM is proved to be convergent under general
conditions. The proof is based on a new global
energy formulated on the skeleton of the DDM
decomposition. The equivalence of the new en-
ergy with the H! nom on the skeleton of the
DDM decomposition is shown. The extension
at any order is briefly discussed.
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1 Introduction

We consider a general family of domain decom-
position iterative processes:

e Initialize u) € H'(;) for all 4.
e For p € N, compute u**' € H'(;) for all i
(A+w?)u™ = finQ, Vi,
(O — iwT) ub; P (T + iwTTI) ub,,
(On — 1w)ufl+1 = OonT,

(1)

where the second equation denotes a possibly
global transmission condition on the skeleton ¥
of the DDM. The operator II denotes the natu-
ral exchange operator on 3.

We report hereafter on recent advances [5] (to
compare with [1-3]) where the operator 7' comes
from a second order approximation of transpar-
ent condition on a flat boundary in 2D. That is
we desire that the transmission equation 7' on
¥ in (1) models

p+1 s 0Dl
( 2w2 Ot ) On, w0 i~ g

=— ( 2w28t 4 )anjuﬂ iwu?i on Xjj,
(2)

where X;; = Xj; is the part of ¥ in between €

and ;. Such a requirement is algorithmically

natural since second order transmission opera-
tors are already implemented in [4]. One no-
tices that we have selected a second order op-
erator which has some positivity property since
the principal symbol is 1 — 2%28“ > 0 which is
formally non negative.

We propose to focus on combinations of Neu-
mann traces and Dirichlet traces under the form

Z i pePre(Xr) = 0, V(ij) € &,
(RO)EEr
(3)

where &, denotes the set of edges around the
node/vertex x,, T;; denotes a tangential deriva-
tion and ¢;; denotes with simpler notations a
linear rescaling of O, u;;. All quantities (3) which
concern Neumann traces and Dirichlet traces
around the same node/vertex x, are gathered
in two vectors, one for the Neumann traces and
one for the Dirichlet traces. One obtains

87'”8013 Xr

Orpr + A", = 0, (4)

with the matrix A" € Myg, (C) contains the un-
knowns coefficients (o/{j K0)ij kil

2 Definition of T and other considera-
tions

We model/introduce the above considerations
by defining the bilinear form a(-,-) on the skele-
ton: for all p,v¢ € H} (2)

Z/ <(P”L]'¢lj 2% 281: @zjat ¢13> do

] i
+2%2 Zr:l( "pr; r)c2dr -

(5)
We make the assumption that A™ has pure imag-
inary coefficients and that it is skew-hermitian
A" = iH" where H" = (H")" € Mag, (R). Since
a is coercive (in particular because the transmis-
sion operator is symmetric non negative), one
can define

{ Find ¢ € H] (X) such that (©)
a(%ﬂ’) = (U71/})L2(E)7 V1/1 € Hkl)r(z)
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This problem is well posed, there exists a unique
solution ¢ € H! (), which denotes the skeleton
endowed with the natural broken H' norm.

Definition 1 Let T: L?(X) — L?(X) be the op-
erator such that Tv = ¢, where ¢ is the solution
to the problem (6) for v € L*(X).

The symmetric part of T' admits a spectral
decomposition. Let (un)nen C H{ (X) be the
Hilbertian basis such that (T+TT*) Up = Aplnp,

- 72

(un,um)Lz(E) = Opm and span{un}neNL & _
L?(X). The eigenvalues satisfy 1 > A, > A\pyq >
0 and A, converges towards zero as n goes to
infinity. This leads to the definition of the op-
erator (T+TT*)71 . L*(X) — L?(X) such that
(T+TT*)_1 Uy = %un and the space Hh(X) =
{u € L*(2), ||ul| < oo}, endowed with the norm
I[Il defined as

‘( ) |2 1/2
U, Uy,
flafl o= | D2 =]

n>0

Vu € LA(%).

The hermitian scalar product in HL(X) is de-
noted (u,v) == 3, 5 ﬁ(u,un)Lz(z) (v, un) 25y =

((%)71 U, U)LQ(E)’ Vu,v € HH(Z). As a

consequence, H:(X) is a Hilbert space. One of
our main mathematical result is that Hj.(X) =
H{! (¥) with equivalence of norms.

Definition 2 We say that operator T is com-
patible if IITTI = T*.

Under the compatibility assumption, DDM (1)
can be rewritten as

(A+w?) ™ = fforalli,
(On — iwT) u%“ = —II(On + iwT™) u,
(O —iw)ul™' = OonT.

(7)
Define EP := M(@n —iwT) ugH|2

Lemma 3 Assume that T wverifies the compat-
wbility condition from Definition 2, and that at
each stage of the algorithm (7) uP € ®;H(£;)
and Opul, € H{ (X). Then, algorithm (7) is sta-
ble (and finally convergent) in the sense that its
energy is decreasing: EPT = EP—4? HUPH%Z’(F)-

3 Extension to higher order transmission
conditions

A natural question for our methodology is to
model transmission conditions at higher order.
Let us consider a plane wave

U(X) — eiw(cos Oz+-sin Oy) .

One considers the exact outgoing condition on
a flat boundary {x = 0} such that 0, = 0,:
Onu — iwcosBu = 0. For |sinf| < 1, one has

. 1 w2\ -
the conve;rgent expansion 058 = (18 sin® 6) ™2
_ sin” @ 3sin* @ 5sin® 6 35sin® @
=15 T e g e Al

coefficients are positive. Then a truncation at
any order yields a transparent boundary condi-
tion of the corresponding order. For example,
an expansion at order 6 writes

1+ sin220 + 35i§40 + 55i1%60> anu_iwu — 0. One
has formally iw sin @ = 0, = 0¢. One obtains the
artificial condition

8t?t 38€ttt 58§ttttt .
< _ﬁ_‘_ 8w4 - 16w6 anu—lwuzo.

By construction, the operator A = 1 — 28%'32 +
ggitf — % is formally symmetric non nega-
tive. For such an operator one can defines gen-
eralized Neumann traces (0fp for r = 3,4,5)
and Dirichlet traces (0 ¢ for r = 0, 1,2), then it
is possible to define a new bilinear form (5) with
generalized corner matrices. The properties of
this new bilinear a and of the corresponding new

transmission operator is left for further studies.
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