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Abstract

When you measure the scattered field from a
material filled with randomly placed particles,
you will have to perform the measurement many
times, and then take the average, to get a re-
peatable result. How then do you relate this
average measurement to the particles? Here we
show how to mathematical model this average
scattering, and present results on validating these
models against heavier Monte Carlo simulations.
The recent breakthrough that has enabled us to
achieve a broadband numerical validation of the
theory is that we now have rigorous models for
scattering from a sphere filled with particles. A
sphere, in contrast to a plate or halfspace, filled
with particles can be easily simulated with a
Monte Carlo approach.
Keywords: multiple scattering, random media,
particulate. pair correlation

1 Introduction

Detailed derivations are given in [1]. Below we
give a brief overview. To define the average scat-
tered wave from a random particulate, we first
need to define the scattered wave from just one
configuration of particles. Figure 1 illustrates a
scattered wave from one configuration, and the
average over all particle configurations.

For a point r, outside of all particles, we can
write the total field u(r) as a sum of the incident
wave uin(r) and all scattered waves:

u(r) = uin(r) + usc(r), (1)

usc(r) =
J∑

i=1

∑

n

f i
nun(kr − kri), (2)

where ri is a vector pointing to the centre of
the i-th particle, we assumed |r − ri| > a for
i = 1, 2, . . . J , with a being the particle radius,
the un are the basis of outgoing spherical waves,
and the coefficients f i

n can be determined by ap-
plying the boundary conditions on all particles
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Figure 1: Scattering of an incident plane-wave from
a) a sample of J = 330 particles, and b) the ensem-
ble average of the scattered field over all possible
particle positions. Taken with permission from [1].

(not shown). The field
∑

n f
i
nun(kr−kri) is the

wave scattered from the i-th particle.
By taking an ensemble average of the above,

and assuming all particles are the same, we reach

〈usc(r)〉 = J
∑

n

∫

R
〈fn〉(r1)un(kr−kr1)p(r1)dr1,

where R is the region where the particle centres
are contained, p(r1) is the probability of finding
a particle centred at r1, when the position of all
other particles is not known. The 〈fn〉(r1) are
determined by ensemble averaging the boundary
conditions (not shown above), which results in

〈fn〉(r1) = TnGn(r1)+ (3)

Tn

∫

R
Un′n(kr1 − kr2)〈fn′〉(r2, r1)g(r1, r2)dr2,

where Un′n(kr1) is a translation matrices, com-
posed of known special functions, and Gn(r1)
depends on the incident wave. The g(r1, r2) =
p(r1,r2)

p(r1)p(r2)
is the pair-correlation , and the Tn is

the T-matrix which describes scattering from
just one particle. If g(r1, r2) and Tn were known,
then the aim is use the above to solve for 〈fn〉.

The above equation is exact, with no ap-
proximations. It is similar to Dyson’s equation,
which is typically used by the physics commu-
nity.
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1.1 Statistical assumptions

To solve (3) it is typical to make some assump-
tion about g(r1, r2), and how 〈fn′〉(r2, r1) is re-
lated to 〈fn′〉(r2). The simplest assumptions
are

g(r2; r1) ≈
{
1 for |r1 − r2| ≥ a12,

0 for |r1 − r2| < a12,
(4)

and 〈fn′〉(r2, r1) ≈ 〈fn′〉(r2) for |r1 − r2| ≥
a12, which are called hole correction and the
Quasi Crystalline Approximation. There are many
different models for g(r2; r1) that represent clumped
materials, or even particles on a lattice. For par-
ticles distributed randomly, according to a uni-
form probability density, a more accurate modal
is called the Percus-Yevick pair-correlation.

We will discuss validating these assumptions,
and how these lead to analytic solutions below.

2 Effective waves

A key development has been to show that (3),
together with the statistical assumptions above,
leads to two simpler equations

〈fn〉(r1) =
∑

n′

∫

∂B
Wnn′(r2)〈fn′〉(r2 + r1)dr2

Gn(r1) =
∑

n′

∫

∂R
Bnn′(r1 − r2)〈fn′〉(r2)dr2

where B is a small ball depending only on the
particle geometry, andWnn′ and Bnn′ are known
special functions. The first equation we call the
ensemble wave equation, as it does not depend
on the incident wave, or the geometry of the
whole material R, and can specify completely
the modes of 〈fn〉(r1). The second equation we
call the ensemble boundary conditions, as it de-
pends on the incident wave and material geom-
etry, and is needed to specify the amplitude of
the modes of 〈fn〉(r1).

With the equations above we can calculate
the average scattering from a material (filled
with a random particulate) of any geometry. In
particular, we choose a sphere filled with parti-
cles, as this allows us to achieve something that
has long been a goal: a robust and broad numer-
ical validation of typical statistical assumptions,
see Section 1.1. A sphere filled with a finite
number of particles is far easier to numerically
simulate. We also make use recent developments
in numerical techniques to perform Monte Carlo
simulations [2, 3].

For most particle volume fractions, the re-
sults are similar to Figure 2. That is, the ef-
fective waves solution is equivalent to a direct
numerical solution of (3), and the heavier Monte
Carlo simulations agree well when using the Percus-
Yevick approximation to calculate the pair-correlation.
These results give confidence that the analytic
methods shown here could form the basis for
quantitative sensing of particulate materials.

Figure 2: Shows different methods to calculate the
average scattering cross section from a sphere, filled
a 15% particle volume fraction, for different incident
waves lengths. Monte-Carlo simulates hundreds of
different particle configurations explicity. Eff. wave
uses the Effective wave, and Integral uses a numer-
ical method to solve equation (3). HC refers to us-
ing hole correction, shown in Section 1.1, where PY
refers to the pair-correlation called Percus-Yevick.
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