WAVES 2022, Palaiseau, France

Linearly implicit energy consistent time discretisation for nonlinear wave equations
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Abstract

Nonlinear phenomena can occur in vibrating struc-

tures, as for instance piano strings, due to large

deformations or nonlinear constitutive state laws.

Integrating the nonlinear models in space and
time can be done accurately in many ways, but
preserving an energy identity at the discrete level
is an efficient way to adress numerical stabil-
ity when coupling with other systems (as in the
case of the piano). Gradient based integrators
achieve this purpose at the cost of solving a
nonlinear system at every time step. New for-
mulations called Invariant Energy Quadratiza-
tion (IEQ) and Scalar Auxiliary Variable (SAV)
[2-4] only require the inversion of a linear sys-
tem while still preserving a discrete energy iden-
tity. This work presents a convergence analysis
of an interleaved time integrator based on IEQ
and #-scheme as well as numerical illustrations.
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1 Introduction

Let z € Q = [0,L] and ¢ € [0,T], a system of
wave equations is considered under the form :

Mq + (qu - ar(RanQ)) - 890 (Kaxq + Bq
+VU(029)) + Cq+ 'Bdeg = S(z,t) (1)

where ¢(z,t) € RN, M, Ry, Ry, K, B, C are
matrices with physical coefficients, ¢ : RY —
R is a nonlinear application and S is the source
term. Boundary and initial conditions are given
by ¢(0,t) = ¢(L,t) = ¢(z,0) = 0. The pi-
ano string enters this general framework, see [1].
Any regular solution to (1) satisfies an energy
identity that states
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2 Energy compliant formulation of a non-
linear system of wave equations

Following the Invariant Energy Quadratization
technique [2-4| an auxiliary variable is intro-
duced as ((z,t) = \/2U(0xq(x,t)) + ¢, where ¢
is chosen so that the square root is real. Hence
the term VU(0yq) in (1) is equal to ¢ H(0:q)
where

VU(p)

Hip) = V2U(p) + ¢

(3)
so (1) becomes

Mg+ (qu - az(RQazQ)) — Oy (Kazq + Bq
+( H(92q)) + Cq +"'Boyq = S(x,t)
(4)
and this new system satisfies the previous en-
ergy identity (2a) with
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3 Space and time approximations

After performing a variational formulation of
(4) with q(t) € (HY(Q))N and ¢(t) € L*(Q)
and restricting to adequate finite-elements ap-
proximation spaces, a semi-discrete system is
obtained

{ MpQn + RyQn + KnQp + "H(Qr) Zn = Sh
ApZp, =H(Qn) - Qn
(6)

where My, A, Ry, and K}, are usual FEM matri-
ces, S, the source vector, and H (Q},) is a matrix
whose values depend on Q)y,.

Following [4], an interleaved time scheme is
proposed:
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where [Qn)A2 = (@7 —2Q7 + Q1) /At? and
{Qn}f = 0@ + (1 - 20)Qf + 005"
3.1 Energy consistency

This space/time discretisation satisfies a discrete
equivalent of (2a)
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vl}}ere the modified mass matrix writes
My, = My, + At? (9 — %) Ky,

3.2 Stability

The scheme (7) is shown to be stable if the mod-
ified mass matrix Mh is definite positive, which
is the classical CFL condition of the #-scheme.
The treatment of nonlinear terms does not im-
pact the stability properties.

3.3 Complexity

An interesting property of scheme (7) is that

for each time step, knowing (QZ‘I, Qr, Zg_l/z),
the computation of ( ZH, Z,T;H/ 2) only requires
the evaluation of H (Q}) and the solution of one

linear system of size N x N} + N}g.

4 Convergence analysis

Let ey = Q) — Qn(t") and e} = Zj7 — Zy(t")
where Qy,, Z, are solutions of (6). We will show
that :

ledll, <TR and ey ?|l, <R, where

TR
R=eNT ||6gl1Hp+ ”657,2”17
M= " A- =
and K—, M~, A are the strictly positive min-
imal eigenvalues of Kp, My and Ap; which are
supposed definite positive.

Truncation errors €] , are O(At?) if the semi-

discrete solution is regular enough in time (Qp,
must be C* and Z;, must be C3).

5 Numerical illustration

A piano string is modeled (see [1]) and forced
with a C* in space and time compactly sup-
ported source. Fig. 1 shows the relative L? in
space and L in time consecutive error between
the solution computed with a time step At and
the refined one with step At/2; using second or-
der FEM. As expected the presented IEQ scheme
shows quadratic convergence.
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Figure 1: L? in space and L™ in time relative

error of several schemes

6 Prospects

Another promising idea [3] is to define ¢ as

L
C(t):\/Q /0 UDug)(z,t)dz + ¢ (8)

This auxiliary variable is now a scalar and the
new system equivalent to (7) is only of size N x
N}z—l—l. This SAV scheme is faster than TEQ and
the relative error between the two obtained solu-
tions is only 10~8. Convergence is also quadratic
(see Fig. 1).
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