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Abstract

In various biomedical applications, precise fo-
cusing of nonlinear ultrasonic waves is crucial for
efficiency and safety of procedures. This work
analyzes a class of shape optimization problems
constrained by general quasi-linear acoustic wave
equations that arise in high-intensity focused ul-
trasound (HIFU) applications and extends on
the work of [3] on the Westervelt pressure equa-
tion. Within our theoretical framework, theWest-
ervelt and Kuznetsov equations of nonlinear acous-
tics in potential form are obtained as particu-
lar cases. To prove the existence of the Eule-
rian shape derivative, we study the local well-
posedness and regularity of the forward prob-
lem, uniformly with respect to shape variations.
Additionally, we prove Hölder-continuity of the
acoustic potential with respect to domain de-
formations in order to rigorously compute the
shape derivative within the varitional framework
of [1] for different cost-functionals of practical
interest. The talk will be based on [2].
Keywords: nonlinear acoustics, shape optimiza-
tion, Kuznetsov’s equation, energy method, HIFU.

1 Introduction

High-Intensity Focused Ultrasound (HIFU) is
emerging as one of the most promising non-invasive
tools in treatments of various solid cancers. How-
ever, its wide-scale use hinges on the ability
to guarantee the desired sound behavior in the
focal region. Since these ultrasonic waves are
commonly excited by one or several piezoelec-
tric transducers arranged on a spherical surface,
changes in their shape directly affect the propa-
gation and focusing of sound waves and give rise
to practically relevant optimization problems.

Motivated by this, in the present work we
conduct the analysis of a class of shape opti-
mization problems subject to a quasilinear wave
model with general quadratic nonlinearities:

(1− 2kψ̇)ψ̈ − c2∆ψ − b∆ψ̇ − 2σ∇ψ̇ · ∇ψ = 0,
(1)
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Figure 1: The optimization setup, where D =
DS × (t0, t1)

on smooth spatial domains, assuming nonhomo-
geneous Neumann boundary excitation.

Besides, we not only treat the classical L2(L2)-
tracking problem on D = DS × (t0, t1), where
the acoustic velocity potential ψ should match
a desired output ψD on a given spatial focal re-
gion DS within a certain time interval (t0, t1),
i.e,

J(ψ,Ω) =
1

2

∫ T

0

∫

Ω
(ψ − ψD)2 χDS

dx ds,

we also consider in this work an L2-matching
objective at final time:

JT (ψ,Ω) =
1

2

∫

Ω
(ψ(T )− ψDS

)2 χDS
dx.

Additionally, we study an L2(L2)-tracking func-
tional on ψ̇, corresponding (up to a multiplica-
tive constant) to tracking the sound pressure:

Jp(ψ,Ω) =
1

2

∫ T

0

∫

Ω

(
ψ̇ − fD

)2
χD dxds;

see Figure 2 for an illustration of the optimiza-
tion setup.

2 Well-posedness results

We study, under the hypothesis of small initial
and boundary data, the well-posedness of the
nonlinear Kuznetsov equation (1) coupled with
inhomogeneous Neumann boundary excitation

∂ψ

∂n
= g,
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and initial data

ψ(0) = ψ0 ∈ H3(Ω), ψ̇(0) = ψ1 ∈ H2(Ω).

g is taken in H2(H−1/2(∂Ω)) ∩ H1(H3/2(∂Ω))
such that ġ ∈ L∞(H1/2(∂Ω)), and Ω is a C2,1-
regular domain.

Moreover, we study the well-posedness of the
general adjoint problem

∂

∂t

(
(1− 2kψ̇)ṗ

)
− c2∆p+ b∆ṗ

− 2σ∇ · (ṗ∇ψ) = f

c2 ∂p

∂n
− b ∂ṗ

∂n
+ 2σgṗ = 0

p(T ) = p0, ṗ(T ) = p1,

(2)

which covers the different studied cost function-
als for specific choices of f , p0, and p1; see [2] for
details. We then establish sufficient conditions
on f , p0, and p1 for which the adjoint problem is
well posed and the shape derivative (given here-
after) is well defined.

3 Shape deformation and sensitivity

To describe shape variations and thus be able
to express the shape derivative we use a vector
field

h ∈ D =
{
h ∈ C2,1

(
U,Rl

)
h|∂U = 0

}
,

to perturb the identity [4].
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Figure 2: Pertubing the identity

Adopting the variational framework devel-
oped in [3], we rely on the Hölder continuity of
the potential with respect to domain perturba-
tions. We furthermore show that the Kuznetsov
equation is uniformly well posed with regard to
small enough shape variations.

Under the assumptions of this and previ-
ous sections, we then derive shape derivatives
of the form required by the Delfour–Hadamard–
Zolésio structure theorem.

Theorem 1 The shape derivatives for cost func-
tionals J , Jp, and JT exist in the direction of
any h ∈ D and are given by

dJ(Ω)h =

∫ T

0

∫

∂Ω
(
∂

∂n
((c2g + bġ)p)

+ (c2g + bġ)pκ)(h · n) dγ ds

−
∫ T

0

∫

∂Ω

(
(1− 2kψ̇)ψ̈p+ c2∇p · ∇ψ

+b∇p · ∇ψ̇ − 2σp∇ψ · ∇ψ̇
)

(h · n) dγ ds,

where κ stands for the mean curvature of ∂Ω and
p depends on the choice of the cost-functional via
(2).

4 Conclusions

In this work, we have analyzed shape optimiza-
tion problems governed by general wave equa-
tions that model nonlinear ultrasound propaga-
tion and, as such, arise in HIFU applications. In
particular, we have established sufficient condi-
tions for the well-posedness and regularity of the
underlying wave models with nonhomogeneous
Neumann boundary conditions, uniformly with
respect to shape deformations, as well as the
Hölder continuity of the solutions. Furthermore,
we have studied the corresponding adjoint prob-
lems and rigorously computed shape derivatives
for several objectives of practical interest.

Future work will be concerned, among oth-
ers, with the numerical analysis and simulation
of the Kuznetsov equation and of the optimiza-
tion problems presented in this work.
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