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Abstract

In this talk, we consider the semiclassical mag-
netic Schrodinger equation, which describes the
dynamics of particles under the influence of a
magnetic field. Following [1], the solution of
the Schrédinger equation is approximated by
Gaussian wave packets via the time-dependent
variational formulation by Dirac and Frenkel.
For the numerical approximation we will derive
ODE:s for the parameters of the variational solu-
tion. Moreover, we obtain L?-error bounds and
observable error bounds for the approximating
Gaussian wave packet.
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1 Introduction

We consider the semiclassical magnetic Schro-
dinger equation

iedp(t) = H(t)p(t), ¥(0) =1, (1)
with Hamiltonian
H(t) = (ieV + A1) + V(#),

for t € [0,T] on R? and the semiclassical pa-
rameter 0 < ¢ < 1. The scalar, subquadratic
potential V' and the vector valued, sublinear,
magnetic potential A are assumed to be smooth
and might be time-dependent. We approximate
the solution of (1) on the manifold M of Gaus-
sian wave packets of the form

u(z, ) = exp (; (;ququ +alp+ g)) 2)

where x4, = v — ¢ with time-dependent param-
eters q(t), p(t) € RY C(t) € C? symmet-
ric with positive definite imaginary part, and
phase ((t) € C. To approximate in time we
derive equations of motion (ODEs) for the pa-
rameters of the wave packet. Following the ap-
proach in [1], we derive L2-error bounds and er-
ror bounds for observables.

Employing a perturbation result for relatively
bounded operators, well-posedness of (1) is ob-
tained via evolution families in the hyperbolic
case, cf. [3-5].

2 Variational approximation

We consider the Dirac-Frenkel variational ap-
proximation introduced in [1,2]: Seek u € M
such that dyu(t) € Ty )M and

(iedpu(t) — H(t)u(t)|v) =0, v € TyyM, (3)

where we denote by T, M the tangent space of
the manifold M at u. Using the orthogonal pro-
jection P, : L?(RY) — T, M onto the tangent
space, the variational approximation (3) can be
reformulated as

ieduu(t) = Py (H(u(®),  (4)

with initial value u(0) = ug € M.

The approximation by Gaussian wave pack-
ets seems appropriate due to the following ex-
actness result shown in [1].

Proposition 1 (|1, Prop. 3.2]). Let V(-,t) be
quadratic and A(-,t) be linear in space, t € [0,T].
If the initial value g is a Gaussian wave packet,
then the solution of (1) is given by the varia-
tional approximation satisfying (4).

3 Equations of motion

The variational formulation (4) leads to ordi-
nary differential equations for the parameters of
the Gaussian wave packet. To see this we use
the following projection formula from [1].

Proposition 2 ([1, Prop. 3.14|). For a Gaus-
sian wave packet u with ||u||r2 = 1 and a scalar
smooth potential W we have

P, (Wu) = (a + UT:L'q + %J:qTBa:q)u,
where a, v, B are given by
a = (W), = St (ImC~1 (V2W), ).
v=(VW),, B=(VW),.
Here we used the notation (W), = (u|Wu).
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Comparing both sides of (4) and using
Proposition 2 leads to ordinary differential equa-
tions for the parameters. The normalization is
achieved by choosing an initial Gaussian wave
packet of L?-norm one and employing norm con-
servation. In order to apply Proposition 2 we
make use of

ieA-Vu=—-A- (C’xq + p)u,
€2A (1 70 T
g Au= §£L'q0 xg+p Cry)u

1, 9 €

For the equations of motion we use the notation
1
= 7|A|2 + V7

Ja= (941",
(D%,v)k,l = ijlalakAjUj, NS Cd.

If the parameters of the Gaussian wave packet u
defined in (2) satisfy

q=p— (A,
p=(JiReC(z —q)), + (Ja)up = (VV)u,
C=—C*+ (DA Rec(o—q)u+ (Dipu

+ (IDTC + C(Ja)y — (V2V)y,

then w is the variational solution (4). Moreover,
( is defined by normalization of u.

4 [L2- and observable error bounds

If the potentials A and V' can be approximated
by linear or quadratic potentials, respectively,
then by Proposition 1, the L?-error is of or-
der /e, provided the following assumption holds.

Assumption The parameters q,p € R?, C €
C>? and ¢ € C of the Gaussian wave packet u

satisfying (2) and (4) are bounded uniformly on
[0,T].

For our analysis in [6], we assume that the
equations of motion for the parameters are solved
exactly and therefore use (4). With this, we can
state the following bound.

Theorem 4. Let ) be the solution of (1) and u
be the solution of (4). If the initial value vy is
a Gaussian wave packet, then we have the error
bound

() — u(®)llz2 < teve,

where ¢ depends on the parameters and on the
potentials, but is independent of € and t.

Next, we state the error of observables, i.e.,
selfadjoint operators on L?(R?), which are used
to describe physical states. We consider opera-
tors A = OpPyyey (@) corresponding to a classical
observable a = a(g,p) € C*(R?) via the Weyl-
quantization satisfying

OPWeyl (P)Y = 1€V, 0Pwey1 (@)1 = x9.

Theorem 5. Let v be the solution of (1) and u
be the solution of (4). If the initial value 1 is
a Gaussian wave packet, then we have the error
bound

K ()| A(t) > <U (t)|Au(t) >‘<tcs

where ¢ depends on the parameters, on the po-
tentials, and on a, but is independent of € and t.
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