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Abstract

This contribution aims at illustrating some re-
cent advances in the application of the Energetic
Boundary Element Method (EBEM) to the nu-
merical resolution of Elastodynamic problems
both in exterior and interior domains.
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1 Introduction

From the initial work of [1] and [2], it has been
clear that the energetic weak approach to bound-
ary integral formulations gives a good theoreti-
cal setting for the investigation of elastodynamic
wave propagation.
The method is based on a boundary integral
representation formula for the di�erential prob-
lem solution, then a weak formulation linked to
the energy of the system is applied in order to
achieve, in the approximation phase, accurate
and stable numerical results.
However, the extension of the EBEM implemen-
tation is not straightforward since the compu-
tation of linear system entries requires sophis-
ticated numerical strategies depending on the
problem at hand (2D or 3D, bounded or an un-
bounded domain equipped with Dirichlet and/or
Neumann conditions) and on the integral formu-
lation used to represent the solution. In partic-
ular an accurate study of the numerical evalua-
tion of double space integrals involved must be
performed looking at the singularities of the in-
tegrand functions [3].
Further, the increasing complexity and dimen-
sionality of test problems compels to perform a
fast implementation by parallel computing on
CPUs and GPUs and applying compression al-
gorithms.

2 The model problem

Consider a domain Ω ⊂ Rn with n = 2, 3, then
the displacement u = (u1, . . . , un) during the
time interval [0, T ] in a linear, homogeneous,

elastic and isotropic medium is described through
the Navier equation by components:

n∑

h,k,l=1

∂

∂xh

(
Ckl
ih

∂uk
∂xl

(x, t)

)
− ρüi(x, t) = 0

i = 1, . . . , n ∀(x, t) ∈ Ω× (0, T ]
(1)

with mass density ρ and Hooke tensor Ckl
ih de-

pending on the elastic material properties. The
description of the problem is completed by ini-
tial and Dirichlet and/or Neumann boundary
conditions

u(x, 0) = 0; u̇(x, 0) = 0 x ∈ Ω
u(x, t) = gD(x, t) x ∈ ΣD := ΓD × [0, T ]
p(x, t) = gN (x, t) x ∈ ΣN := ΓN × [0, T ]

(2)
being pi(x, t) :=

∑n
h,k,l=1 Ckl

ih
∂uk
∂xl

(x, t)nh(x) the
i-th component of the traction p de�ned with
respect to a normal vector n at a point x of the
boundary ∂Ω = ΓD ∪ ΓN .

3 The energetic boundary integral for-

mulation

Starting from the Somigliana identity and ap-
plying the arguments related to energy as done
in scalar wave propagation problems [4], the un-
known traction p on ΓD and displacement u on
ΓN appear to be solutions of the system

( ˙(Vijpj), ϕi)L2(ΣD) − ( ˙(Kijuj), ϕi)L2(ΣD) =

( ˙fD,i, ϕi)L2(ΣD)

((Dijuj), ψ̇i)L2(ΣN ) − ((K ′
ijpj), ψ̇i)L2(ΣN ) =

( ˙fN,i, ϕi)L2(ΣN )

(3)
involving the fundamental solution tensor through
the classical integral operators V,K,K ′, D as
de�ned in [5]. ϕ de�ned on ΣD and ψ de�ned
on ΣN are test functions belonging to the func-
tional space of p and u respectively.

4 Numerical results

Preliminary numerical results have been pub-
lished in [3] and in [6].
In the �gure 1 there is the representation at
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Figure 1: Example of 2D elastodynamic wave
propagation.

some time instants of the intensity (Euclidean
norm) of the total displacement generated by an
incident plane pressure wave that propagates in
a 2D domain in the horizontal direction from
left to right. The incoming plane pressure wave
uinc propagates along the horizontal direction
k = (1, 0)T with phase velocity equal to 2 and
impacts on the left side of the disk at the time
instant t = 0.25 with the following shape

uinc(x, t) = −kg(cP (t− 0.5)− k · x)

de�ned by g represented in Figure 2, setting
the primary and the secondary waves velocities
cP = 2 and cS = 1. The total displacement is
obtained by summing to the incoming wave, the
re�ected wave that results solving the Dirichlet
problem with datum gD(x, t) = −uinc(x, t).
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