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Eddy-current asymptotics of the Maxwell PMCHWT formulation: the multi-body case
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Abstract. A low-frequency, high-conductivity asymp-
totic approximation of the Maxwell transmision problem
for configurations with highly-conducting, moderately-

conducting and non-conducting bodies, motivated by eddy

current testing applications, is proposed and validated.
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Introduction In eddy current (EC) testing
applications, ECs oE (E: electric field, o: con-
ductivity) are induced in tested metal parts by a
low-frequency (LF) source idealized as a closed
current loop in air. The EC model corresponds
to the magneto-quasi-static approximation of the
Maxwell problem, which neglects the displace-
ment current. In presence of highly conduc-
tive (HC) media, the boundary integral equa-
tion (BIE) of the first kind under the magneto-
quasi-static approximation proposed in [4] was
shown in [2] to coincide with the leading order of
an asymptotic expansion of the Maxwell BIE in
a small parameter v reflecting both LF and HC
assumptions. Here, we extend [2] and derive a
low-v asymptotic approximation for configura-
tions involving multiple moderately-conducting
(MC, ¢ = O(1)) or non-conducting (NC) ob-
jects in addition to HC objects, which may be
multiply-connected and nested.

Setting We consider the time-harmonic elec-
tromagnetic transmission problem whereby M
objects with conductivity o,, complex permit-
tivities £4 1= £0erq = €9 +i0,/w and permeabili-
ties pq = popira (1 < a < M), which occupy the
bounded Lipschitz domains Q, C R?, are sur-
rounded by vacuum filling Qg :=R3\ (Q;U...U

Figure 1: Scattering by multiple objects.

Qur) (Fig. 2). The objects are excited by fields
created by a given current density Jg with com-
pact support in Qg. The electric field E thus
solves the transmission problem

(rotrot — R%)E = iwpgds in Qg,

(rotrot — x2)E =0 in Q,
Y E,—v%X"E =0 onTy, (1)
oYy E =5 Eo=0 on T,

E radiating at infinity, (I1<a< M)

C 2 2 .2 _ ,2(.d o:
wherein ki = eqpow?, K5 = K§ (<€m+10'a / wsg)um

are the wavenumbers in €2,, and the trace oper—
ators 'y‘ii, 'y]“\, are defined by 'yX u =y Fuxn
and 'y?viu =Y *rotwu in terms of the exterior
and interior Dirichlet traces 4%+ on I',. Prob-
lem (1) is then recast as the PMCHWT |[5] inte-
gral equation system, whose primary unknowns
are the tangential current densities J € V¢ (elec-
tric) and M € V* (magnetic) on each I'y (with

= {ve @ : divywv e HY3,)} in
terms of U* :=n x (y*"H' () xn)). More-
over, a Helmholtz-Hodge decomposition [3] V¢ =
Vi ® VY of each V* is used, where Vf := {u €
V¢ divgu = 0} inducing additive decompo-
sitions J* = J{ +J% and M* = MY{ + M#7.
The weak formulatlon of the PMCHWT inte-
gral problem has the form: find X €V,

<§§,7XZX>:<§§,7XY> forall XeV (2)

where Z is a 4M x 4M operator matrix X and
V concatenate the unknowns J7, L. Mt
on each I'; and the associated spaces, and X
are correspondingly defined test functions. The
boundary element discretization of (2) uses the
loop—tree decomposition, see e.g. [1].

Expansion of the PMCHWT system We
introduce the dimensionless parameter v := koL,
with L a characteristic length. Each object €,
is taken as either NC (i.e. g, = 0), MC (i.e.
04 = CaOret) or HC (i.e. 04 = v lcaomet), each
dimensionless factor ¢, being fixed (i.e. inde-
pendent on 7) and with oy := L™1\/0/po. In
particular, the HC bodies are in the eddy cur-
rent regime. Our general aim is to define ap-
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proximate solutions of (2) for low values of v by
seeking an expansion in powers of v of X.

For the surface current densities on each I'y,
we obtain formal expansions of the form

Tt =Tt +J8 + 720150+ 0(),
VRIS = TG0+ TG + 72T 5 + 02, (3)
My = MGL,O + 7]/\2%,1 + VB/QJ\/ZIi,3/2 +0(v%),

T= ]\/Z%,o + 'Y]/\Z%‘,l + ’73/21/\2’%,3/2 +0(v%),

with all coeficients J Lo defined as solutions of
integral problems arising from the expansion of
problem (2). This in turn results in expansions

E =(Eo+7E; +7*?E5) + 0(v%))
H =H,+vH; +’Y3/2H3/2+O(’YZ) (4)
AZ = ~y(AZy +yAZy + 72N Z s + O(7?)),

with all coefficients well-defined in terms of those
of (3), for the electromagnetic fields E, H in €
and in each ), and the impedance variation AZ
(see [2, eq. 27|, of main interest in EC testing).

Remarks and extensions The leading-order
operator matrix ZO arising from the expansion
of problem (2) has some zero blocks entries, such
that any system of the form ZOX =Y can be
solved blockwise in three stages, with computa-
tional benefits. Stage 1 yields (A‘ﬂ, M¢, M) qenc
and (jﬁ, J\/Z’aT)aeNCuMC at any order and often
suffices in practice as it provides at order 4° the
correct leading-order approximations of AZ, of
H everywhere, and of E in the HC bodies.

Moreover, the operator submatrix for Stage
1 is found to not depend on g, in the MC bodies,
if any. Treating the latter as NC thus produces
the same Stage-1 solutions, and hence all the
correct leading-order approximations obtainable
from Stage 1 at order 7° alone.

In the absence of MC bodies, all terms of
orders 1 and 3/2 vanish in (3) and (4), so that
(for example) we have AZ = ~(AZy+O0(7?)).

The asymptotic formulation outlined above
for homogeneous and simply-connected objects
has in addition been extended for also cater-
ing to (i) bi-material objects of different con-
ductivity classes (e.g. a HC object embedded
in a MC object) and (ii) multiply connected ob-
jects (setting the global loop functions apart due
to their distinct behavior under integral opera-
tors). Both cases required significant modifica-
tions of the asymptotic expansion.
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Figure 2: Multiple-body case with bi-material object:
configuration (top), relative differences with full
Maxwell (bottom). Qs (HC) embedded in ; (ei-
ther NC or MC), Q3 is HC. The grey spheres inside
and outside Q; are evaluation surfaces.

Numerical example We validate the asymp-
totic approximations (3), (4) on an example in-
volving two objects (one bi-material, one homo-
geneous), the embedded object being multiply
connected (Figure 2). The predicted conver-
gence orders are confirmed. Other examples of
this type, as well as applications to EC testing
configurations, will be presented.

References

[1] Andriulli F.P. Loop-star and loop-tree decompo-
sitions: Analysis and efficient algorithms. IEEFE
Trans. Antennas Propagat., 60:2347-2356 (2012).

[2] Bonnet M., Demaldent E. The eddy current model
as a low-frequency, high-conductivity asymptotic
form of the Maxwell transmission problem. Com-
put. Math. Appl., 77:2145-2161 (2019).

[3] Buffa A., Costabel M., Sheen D. On traces for
H(curl,Q) in Lipschitz domains. J. Math. Anal.
Appl., 276:845-867 (2002).

[4] Hiptmair R. Boundary element methods for eddy
current computation. In M. Schanz, O. Steinbach
(editors), Boundary element analysis, vol. 29 of Lec-
ture Notes in Applied and Computational Mechan-
ics, pages 213-248. Springer-Verlag (2007).

[5] Poggio A.J., Miller E.K. Integral equation solu-
tions of three-dimensional scattering problems. In
R. Mittra (editor), Computer techniques for elec-
tromagnetics (Chap. 4), pages 159 — 264. Pergamon
(1973).



