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Eddy-current asymptotics of the Maxwell PMCHWT formulation: the multi-body case
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Abstract. A low-frequency, high-conductivity asymp-
totic approximation of the Maxwell transmision problem
for configurations with highly-conducting, moderately-
conducting and non-conducting bodies, motivated by eddy
current testing applications, is proposed and validated.

Keywords: Maxwell equations, PMCHWT formulation,
eddy currents, asymptotic expansion

Introduction In eddy current (EC) testing
applications, ECs σE (E: electric field, σ: con-
ductivity) are induced in tested metal parts by a
low-frequency (LF) source idealized as a closed
current loop in air. The EC model corresponds
to the magneto-quasi-static approximation of the
Maxwell problem, which neglects the displace-
ment current. In presence of highly conduc-
tive (HC) media, the boundary integral equa-
tion (BIE) of the first kind under the magneto-
quasi-static approximation proposed in [4] was
shown in [2] to coincide with the leading order of
an asymptotic expansion of the Maxwell BIE in
a small parameter γ reflecting both LF and HC
assumptions. Here, we extend [2] and derive a
low-γ asymptotic approximation for configura-
tions involving multiple moderately-conducting
(MC, σ = O(1)) or non-conducting (NC) ob-
jects in addition to HC objects, which may be
multiply-connected and nested.

Setting We consider the time-harmonic elec-
tromagnetic transmission problem whereby M
objects with conductivity σa, complex permit-
tivities εa := ε0εra = εd

a+iσa/ω and permeabili-
ties µa = µ0µra (1 ≤ a ≤M), which occupy the
bounded Lipschitz domains Ωa ⊂ R3, are sur-
rounded by vacuum filling Ω0 :=R3 \ (Ω1∪ . . .∪
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Figure 1: Scattering by multiple objects.

ΩM ) (Fig. 2). The objects are excited by fields
created by a given current density J s with com-
pact support in Ω0. The electric field E thus
solves the transmission problem

(rot rot − κ20)E = iωµ0J s in Ω0,

(rot rot − κ2a)E = 0 in Ωa,

γa−
× Ea − γa+

× E = 0 on Γa, (1)

µ−1
ra γa−

N E − γa+
N E0 = 0 on Γa,

E radiating at infinity, (1≤ a≤M)

wherein κ20 = ε0µ0ω
2, κ2a = κ20

(
εd
ra+iσa/ωε0

)
µra

are the wavenumbers in Ωa, and the trace oper-
ators γa±

× , γa±
N are defined by γa±

× u := γa±u×n
and γa±

N u := γa±
× rotu in terms of the exterior

and interior Dirichlet traces γa± on Γa. Prob-
lem (1) is then recast as the PMCHWT [5] inte-
gral equation system, whose primary unknowns
are the tangential current densities J ∈Va (elec-
tric) and M ∈Va (magnetic) on each Γa (with
Va :=

{
v ∈ (Ua)′ : divSv ∈ H−1/2(Γa)

}
in

terms of Ua := n×
(
γa−H1(Ωa)×n

)
). More-

over, a Helmholtz–Hodge decomposition [3] Va =
Va

L⊕Va
T of each Va is used, where Va

L :=
{
u∈

Va : divSu = 0
}
, inducing additive decompo-

sitions Ja = Ja
L +Ja

T and Ma = Ma
L +Ma

T.
The weak formulation of the PMCHWT inte-
gral problem has the form: find X∈V,
〈
X̃, γ×ZX

〉
=

〈
X̃, γ×Y

〉
for all X̃∈V (2)

where Z is a 4M ×4M operator matrix, X and
V concatenate the unknowns Ja

L,J
a
T,M

a
L,M

a
T

on each Γa and the associated spaces, and X̃
are correspondingly defined test functions. The
boundary element discretization of (2) uses the
loop–tree decomposition, see e.g. [1].

Expansion of the PMCHWT system We
introduce the dimensionless parameter γ := κ0L,
with L a characteristic length. Each object Ωa

is taken as either NC (i.e. σa = 0), MC (i.e.
σa = caσref) or HC (i.e. σa = γ−1caσref), each
dimensionless factor ca being fixed (i.e. inde-
pendent on γ) and with σref := L−1

√
ε0/µ0. In

particular, the HC bodies are in the eddy cur-
rent regime. Our general aim is to define ap-
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proximate solutions of (2) for low values of γ by
seeking an expansion in powers of γ of X.

For the surface current densities on each Γa,
we obtain formal expansions of the form

Ja
L = Ĵa

L,0 + γĴa
L,1 + γ3/2Ĵa

L,3/2 +O(γ2),

γ−2Ja
T = Ĵa

T,0 + γĴa
T,1 + γ3/2Ĵa

T,3/2 +O(γ2), (3)

Ma
L = M̂a

L,0 + γM̂a
L,1 + γ3/2M̂a

L,3/2 +O(γ2),

Ma
T = M̂a

T,0 + γM̂a
T,1 + γ3/2M̂a

T,3/2 +O(γ2),

with all coefficients Ĵa
L,0 defined as solutions of

integral problems arising from the expansion of
problem (2). This in turn results in expansions

E = γ
(
E0 + γE1 + γ3/2E3/2 +O(γ2)

)

H = H0 + γH1 + γ3/2H3/2 +O(γ2) (4)

∆Z = γ
(
∆Z0 + γ∆Z1 + γ3/2∆Z3/2 +O(γ2)

)
,

with all coefficients well-defined in terms of those
of (3), for the electromagnetic fields E ,H in Ω0

and in each Ωa and the impedance variation ∆Z
(see [2, eq. 27], of main interest in EC testing).

Remarks and extensions The leading-order
operator matrix Ẑ0 arising from the expansion
of problem (2) has some zero blocks entries, such
that any system of the form Ẑ0X̂ = Ŷ can be
solved blockwise in three stages, with computa-
tional benefits. Stage 1 yields (Ĵa

L,M̂
a
L,M̂

a
T)a∈HC

and (Ĵa
L,M̂

a
T)a∈NC∪MC at any order and often

suffices in practice as it provides at order γ0 the
correct leading-order approximations of ∆Z, of
H everywhere, and of E in the HC bodies.

Moreover, the operator submatrix for Stage
1 is found to not depend on σa in the MC bodies,
if any. Treating the latter as NC thus produces
the same Stage-1 solutions, and hence all the
correct leading-order approximations obtainable
from Stage 1 at order γ0 alone.

In the absence of MC bodies, all terms of
orders 1 and 3/2 vanish in (3) and (4), so that
(for example) we have ∆Z = γ

(
∆Z0+O(γ2)

)
.

The asymptotic formulation outlined above
for homogeneous and simply-connected objects
has in addition been extended for also cater-
ing to (i) bi-material objects of different con-
ductivity classes (e.g. a HC object embedded
in a MC object) and (ii) multiply connected ob-
jects (setting the global loop functions apart due
to their distinct behavior under integral opera-
tors). Both cases required significant modifica-
tions of the asymptotic expansion.
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Figure 2: Multiple-body case with bi-material object:
configuration (top), relative differences with full
Maxwell (bottom). Ω3 (HC) embedded in Ω1 (ei-
ther NC or MC), Ω2 is HC. The grey spheres inside
and outside Ω1 are evaluation surfaces.

Numerical example We validate the asymp-
totic approximations (3), (4) on an example in-
volving two objects (one bi-material, one homo-
geneous), the embedded object being multiply
connected (Figure 2). The predicted conver-
gence orders are confirmed. Other examples of
this type, as well as applications to EC testing
configurations, will be presented.
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