
WAVES 2022, Palaiseau, France 1

Domain Derivatives in Electromagnetism and Optimal Design of Chiral Objects

T. Arens1,∗, F. Hagemann1, F. Hettlich1

1Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
∗Email: tilo.arens@kit.edu

Abstract

The concept of electromagnetic chirality allows
the quantification of the difference in interaction
of objects with electromagnetic fields of the two
handednesses. Objects of high em-chirality are
desirable in many technical applications. Do-
main derivatives are required to analyse the ef-
fect of variations of the shape of an obstacle
on the scattered fields. They have been used
both for inverse shape reconstruction problems
as well as for optimal design. In the talk, their
use in designing scatteres of (close to) maximal
em-chirality is discussed.
Keywords: Electromagnetic scattering, chiral-
ity, inverse scattering, shape design.

1 Introduction

In nature, chirality is a phenomenon with im-
portant implications in physics, chemistry or bi-
ology. One field of interest is the interaction of
chiral matter with electromagnetic fields. In ap-
plications, one is naturally interested in materi-
als that interact very differently with fields of
opposite helicity (e.g. circular polarization).

The traditional geometric definition of chi-
rality does not allow for quantification. In Phy-
sics, this has lead to the concept of electroma-
gnetic chirality (em-chirality) [3] and a corres-
ponding scalar measure of this quantity. From a
mathematical perspective, this was first discus-
sed in [2]. Scatterers that have maximal mea-
sure of em-chirality, relative to all others with
the same norm of the farfield operator, have spe-
cial and desirable properties: at least in the case
that reciprocity holds, they are invisible to inci-
dent fields of one helicity.

2 EM-Chirality

We consider a scattering problem for a pene-
trable object illuminated by a time-harmonic
electromagnetic wave. The electromagnetic field
(E,H) is a solution to the Maxwell system

curlE − iωµH = 0

curlH + iωεE = 0
in R3 . (1)

We assume that the material parameters ε, µ
are equal to constant background parameters
ε0, µ0 > 0 outside of some bounded (Lipschitz)
domain D. Inside of D they are also assumed
constant with µ > 0 and arg(ε) ∈ [0, π). The
incident field (Ei, H i) is assumed to be a solu-
tion of (1) for ε0, µ0 in R3. The scattered field
(Es, Hs) = (E,H)−(Ei, H i) satisfies the Silver-
Müller radiation condition at infinity. The stan-
dard asymptotics for scattered fields give rise
to the far field operator F : L2

t (S2) → L2
t (S2),

given by

Fg(x̂) =

∫

S2

E∞(x̂, ŷ, g(ŷ)) ds(ŷ), g ∈ L2
t (S2) .

Here, E∞(x̂, ŷ, g(ŷ)) is the farfield of Es for an
incident plane wave propagating in direction ŷ
with amplitude g(ŷ), observed in direction x̂.
L2
t (S2

2
) denotes the space of square integrable

tangential vector fields on the unit sphere.
A field is said to have helicity λ, if it is an

eigenfunction with eigenvalue λ of the opera-
tor 1

ω
√
εµ curl. For constant ε, µ, a solution

(E,H) to the Maxwell system can always be
represented as a linear combination of two such
eigenfunctions for the eigenvalues ±1, the Bel-
trami fields E ± i

√
µ/εH. For a plane wave,

this is just the well known decomposition into
left and right circularly polarized components.
By approximation with Herglotz wave pairs in
the case of an entire field, or through the far
field in case of a radiating field, this decomposi-
tion extends to L2

t (S2) and hence to F: the far
field operator is split into

F = F+
+ + F+

− + F−+ + F−− ,

with Fpq , p, q ∈ {+,−} describing the scatter-
ing of fields of helicity q onto fields of helicity
p. Denote by (σpq ) the sequences of singular val-
ues of Fpq . The scatterer is called em-achiral if
(σ++) = (σ−−) and (σ+−) = (σ−+). Otherwise it
is called em-chiral, and the relative measure of
chirality

χ =
‖(σ++)− (σ−−)‖2`2 + ‖(σ

+
−)− (σ−+)‖2`2

‖F‖2∗
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was proposed in [3]. Here, ‖ · ‖∗ denotes the
Hilbert-Schmidt norm.

3 Domain Derivatives

Consider the map F : ∂D → E∞ for a fixed inci-
dent field (Ei, H i). The Fréchet derivative of F
with respect to variations of ∂D is called the do-
main derivative and may be computed by solv-
ing a transmission problem of the same type as
the original scattering problem [6]. This deriva-
tive can be used in regularized Gauss-Newton
schemes for solving the inverse scattering prob-
lem of reconstructing the shape of ∂D from mea-
surements of E∞ for one incident wave. The
method was implemented for star-shaped obsta-
cles and electromagnetic transmission problems
in [5].

When only star-shaped scatterers are con-
sidered, the set of admissable parametrizations
for ∂D is a subset of a linear space. Obsta-
cles for which high em-chirality can be expected
are typically described by more complicated pa-
rameterizations with a non-linear dependence
on the optimization variables. When discretiz-
ing the domain derivative in this case, a detailed
derivation of corresponding expressions subject
to the chosen class of parameterizations is re-
quired. A particular application, helicical scat-
terers, and corresponding inverse problems, will
be presented in the talk. Such scatterers are
constructed as C1-smooth surfaces from a center
curve given as a B-spline and function specify-
ing the diameter along the curve. Smooth caps
close the surface at the two ends.

4 Optimal Design of EM-Chiral Objects

For problem of optimally designing a scatterer
with respect to its em-chirality, one requires the
Frécht differentiability of an appropriately cho-
sen measure of chirality with respect to varia-
tions of ∂D. It has been shown that χ as defined
above does not have the required smoothness [4].
Hence the related measure

χ̂ =
(‖F+

+‖∗ − ‖F−−‖∗)2 + (‖F+
−‖∗ − ‖F−+‖∗)2

‖F‖2∗
has been proposed [4] and used in a related op-
timal design scheme based on an asymptotic
representation formula of the scattered field [1].
Note that χ̂ ≤ χ for all scatterers and that, in
particular, χ̂ attains the maximal value 1 if and
only if χ does.

An expressions for the Fréchet derivative of
‖F‖2∗ and corresponding terms for the other op-
erators are readily obtained from the definition
of F as a linear integral operator. One only re-
quires variants of the estimates in [6] that make
explicit the uniform bound on the H(curl)-norm
of the incident field. The implementation of the
algorithm for the class of helicical scatterers dis-
cussed in the previous section is subject to on-
going research.
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