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Abstract

In this work we are interested in the model-
ing of propagation of acoustic and gravity wave
in the ocean. An original model is obtained
by the linearization of the compressible Navier-
Stokes equations with free surface written in La-
grangian coordinates. We present an asymp-
totic analysis for small Mach number allowing
to compare the obtained model to existing lin-
ear models.
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1 Introduction

Several authors have proposed to use the propa-
gation of acoustic-gravity waves in the ocean to
detect tsunamis [2], as the sound travels much
faster in water than the tsunami wave itself.

To model the acoustic-gravity waves, we con-
sider the Navier-Stokes equations for an iviscid,
weakly compressible and free-surface fluid and
aim at a linear approximation of these nonlinear
equations that retains the two types of waves.

The ocean is supposed to be close to an equi-
librium, stratified, with a varying density ρ and
temperature T . The Navier-Stokes equations
describing this state are written in Lagrangian
coordinates for a rigorous treatment of the free
surface. The system is then linearized around
the state at rest, and a wave-like equation is
obtained (it shares similarities with the Gal-
brun equation [4]). We compare our system with
existing models in two ways: first we perform
an asymptotic analysis for small Mach numbers
and recover the equations governing an incom-
pressible flow with free surface. Second we put
the model back to eulerian coordinates and com-
pare it with other well-known and widely used
linear models [1, 3].

2 Lagrangien description

We start with the Navier-Stokes equations in
Lagrangian coordinates. Let Ω be the domain

of the ocean at rest, with boundary Γb at the
bottom and horizontal boundary Γs at the sur-
face. Let d be the displacement from Ω to the
deformed configuration. The gradient of d is F ,
its Jacobian J and the fluid velocity U = ∂td.
The Navier-Stokes equations are then

∂tρ+
ρ

|J |∇ξ · (|J |F
−1U) = 0 in Ω, (1)

ρ∂tU + F−T∇ξp = ρg in Ω, (2)

with the boundary conditions, pa being the at-
mospheric pressure and f a source term,

p = pa on Γs and U · nb = f on Γb. (3)

The pressure and the density must satisfy the
state law p = fp(ρ, T ) with the temperature as-
sumed given. With this law and energy conser-
vation, an equation for the pressure is obtained

∂tp+
ρc2

|J | ∇ξ · (|J |F
−1U) = 0. (4)

Where c is the speed of sound in the fluid.

3 Linearization and the limit state

The equations (1)-(4) are linearized around a
steady state for the ocean at rest: there is no
mean current and the pressure, density and tem-
perature have only vertical variations. This cor-
responds to an asymptotic expansion with ε� 1:

d = εd1 +O(ε2), ρ = ρ0 + ερ1 +O(ε2),

p = p0 + εp1 +O(ε2). (5)

Using these expressions in Eq.(1)-(4) and sepa-
rating powers of ε yields a limit system and a
system for the first order corrections.

For limit terms, one finds that the pressure
p0 and density ρ0 depend only on the vertical
coordinate ξ3, with

p′0(ξ3) = −ρ0g, p0 = pa on Γs (6)

They must also satisfy p0 = fp(ρ0, T0) where T0

is the initial temperature. These equations are
compatibility conditions between the choice of
a state at rest and the hypothesis that this is a
stable equilibrium.
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4 A wave equation for the velocity

The system for the correction terms is written
in Ω and reads

ρ0
∂U1

∂t
+∇ξp1 − (∇ξd)T ∇ξp0 = ρ1g, (7)

∂ρ1

∂t
+ ρ0∇ξ ·U1 = 0, (8)

∂p1

∂t
+ ρ0c

2
0 ∇ξ ·U1 = 0, (9)

with boundary conditions

p1 = 0 on Γs and U1 · nb = f on Γb. (10)

Differentiating in time (7) and replacing ρ and p
with (8), (9) we obtain a second order equation
for U1,

ρ0
∂2U1

∂t2
−∇ξ

(
ρ0c

2
0∇ξ ·U1

)

− (∇ξU1)T ρ0g + ρ0∇ξ ·U1 g = 0. (11)

We introduce for the weak formulation the space

V = {U1 ∈ H(div,Ω) | U1 · n ∈ L2(∂Ω) and
U1 · nb = 0 on Γb}. (12)

The variational formulation of (11) is not straight-
forward to obtain but reads:

Find U1 ∈ C1([0, T ];L2(Ω)3) ∩C0([0, T ];V)
solution to

d2

dt2
(U1,V)H + a(U1,V) = L(V) ∀V ∈ V,

(13)
where a is a symmetric bilinear form

a(U1,V) =

∫

Γs

ρ0 gU1 · e3V · e3 ds

+

∫

Ω
ρ0

(
c0∇ξ ·ψ −

g

c0
(U1 · e3)

)

×
(
c0∇ξ ·V −

g

c0
(V · e3)

)
dξ

+

∫

Ω
N2 ρ0 U1 · e3 V · e3 dξ, (14)

with the Brunt-Väisälä frequency N2 defined by

N2(ξ3) = −
(

g2

c0(ξ3)2
+ g

ρ′0(ξ3)

ρ0(ξ3)

)
,

and L is a linear form

L(V) =

∫

Ω
ρ0V · f dξ.

For values of ρ0, ρ′0 and c0 in the literature, N2

is positive and so is the bilinear form a.

5 Asymptotic analysis for small Mach num-
ber

All the quantities are put in non-dimensional
form. Introducing the non-dimensional number
δ = Ma/Fr, we obtain the equation

ρ0
∂2U1

∂t2
− 1

δ2
∇ξ (ρ0c0∇ξ ·U1)

− (∇ξU1)T ρ0g + ρ0∇ξ ·U1 g = 0. (15)

An asymptotic expansion for δ � 1 is carried
out. The limit solution is divergence free. In the
limit equation the divergence term is replaced
by a Lagrange multiplier. When f = 0 and the
density is constant, the Lagrange multiplier ϕ is
solution to

∆ϕ = 0 on Ω , ∂ttϕ− ∂3ϕ = 0 on Γs. (16)

In other cases (density not constant) the ob-
tained limit equation can be seen as a general-
ization of the classical Cauchy-Poisson equation
for incompressible flow.

6 Comparison with linear models in Eu-
lerian coordinates

The first order system is written in Eulerian
coordinates. The set of equations of [1] is ob-
tained. Compared to [3], our model retains more
terms because of two modelling choices: the fluid
is not assumed irrotational, and the density de-
pends not only on the pressure but also on the
temperature. The interest of our model is demon-
strated by numerical simulations.
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