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Abstract

In this work we are interested in the model-
ing of propagation of acoustic and gravity wave
in the ocean. An original model is obtained
by the linearization of the compressible Navier-
Stokes equations with free surface written in La-
grangian coordinates. We present an asymp-
totic analysis for small Mach number allowing
to compare the obtained model to existing lin-
ear models.
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1 Introduction

Several authors have proposed to use the propa-
gation of acoustic-gravity waves in the ocean to
detect tsunamis [2], as the sound travels much
faster in water than the tsunami wave itself.

To model the acoustic-gravity waves, we con-
sider the Navier-Stokes equations for an iviscid,
weakly compressible and free-surface fluid and
aim at a linear approximation of these nonlinear
equations that retains the two types of waves.

The ocean is supposed to be close to an equi-
librium, stratified, with a varying density p and
temperature 7. The Navier-Stokes equations
describing this state are written in Lagrangian
coordinates for a rigorous treatment of the free
surface. The system is then linearized around
the state at rest, and a wave-like equation is
obtained (it shares similarities with the Gal-
brun equation [4]). We compare our system with
existing models in two ways: first we perform
an asymptotic analysis for small Mach numbers
and recover the equations governing an incom-
pressible flow with free surface. Second we put
the model back to eulerian coordinates and com-
pare it with other well-known and widely used
linear models [1, 3].

2 Lagrangien description

We start with the Navier-Stokes equations in
Lagrangian coordinates. Let €2 be the domain

of the ocean at rest, with boundary I'y at the
bottom and horizontal boundary I'y at the sur-
face. Let d be the displacement from €2 to the
deformed configuration. The gradient of d is F,
its Jacobian J and the fluid velocity U = od,d.
The Navier-Stokes equations are then

ﬁVg S(JIFTTUY =0 inQ, (1)
p0:U + F*TV£p =pg nQ, (2
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with the boundary conditions, p® being the at-
mospheric pressure and f a source term,

p=p*only and U -ny =1 onT}. (3)

The pressure and the density must satisfy the
state law p = f,(p,T) with the temperature as-
sumed given. With this law and energy conser-
vation, an equation for the pressure is obtained

pc? -1
O + mV§-(\J]F U) =0. (4)

Where ¢ is the speed of sound in the fluid.

3 Linearization and the limit state

The equations (1)-(4) are linearized around a
steady state for the ocean at rest: there is no
mean current and the pressure, density and tem-
perature have only vertical variations. This cor-
responds to an asymptotic expansion with € < 1:

d=ed; +0O(?), p=po+ep+O(?),
p=po+ep1+O(). (5)

Using these expressions in Eq.(1)-(4) and sepa-
rating powers of € yields a limit system and a
system for the first order corrections.

For limit terms, one finds that the pressure
po and density pg depend only on the vertical
coordinate &3, with

po(€%) = —pog,  po=p"onTs  (6)

They must also satisfy po = fp(po, To) where Tj
is the initial temperature. These equations are
compatibility conditions between the choice of
a state at rest and the hypothesis that this is a
stable equilibrium.
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4 A wave equation for the velocity

The system for the correction terms is written
in © and reads

ou
Poait1 +Vep1 — (Ved)" Vepo =g, (7)
dp1
] U1 =0 8
En + poVe - Uy ; (8)
15)
% + pocg Vg -Up =0, (9)

with boundary conditions
pr=0onTl, and U;-ny=fonl} (10)

Differentiating in time (7) and replacing p and p
with (8), (9) we obtain a second order equation
for U1,

9*U,
Po o2

— (VgUl)T pPog + png -U;g=0. (11)

- v§ (poC%Vg . Ul)

We introduce for the weak formulation the space

VY ={U; € H(div,Q) | U; -n € L*(09Q) and
Ul sy = 0 on Fb}. (12)
The variational formulation of (11) is not straight-
forward to obtain but reads:
Find U; € CY([0,T]; L?(2)3) n C°([0, T]; V)
solution to

d2
= (U, V)u +a(U, V) =L(V) VVeV,

dt?
(13)

where a is a symmetric bilinear form

a(U,V) = / pogUq - e3V - egds

+/po <00V§'¢— g(U1'93)>
Q Co
X <c0v§ V- Ci(v : e3)> de
0
+/N2p0U1-e3V~e3d§, (14)
Q

with the Brunt-Viisild frequency N? defined by

2 _ 92 P6(53)
M) = (%(53)2 +gﬂo(€3)) ’

and L is a linear form

L(V) = /onv fde.

For values of po, pj and co in the literature, N2
is positive and so is the bilinear form a.

5 Asymptotic analysis for small Mach num-
ber

All the quantities are put in non-dimensional
form. Introducing the non-dimensional number
d = Ma/Fr, we obtain the equation
o’U; 1
POW - ?Vg (Pocovg -Uy)
— (VeU)" pog + poVe-Up g =0. (15)

An asymptotic expansion for § < 1 is carried
out. The limit solution is divergence free. In the
limit equation the divergence term is replaced
by a Lagrange multiplier. When f = 0 and the
density is constant, the Lagrange multiplier ¢ is
solution to

Ap=00onQ, dup—03p=00nT. (16)

In other cases (density not constant) the ob-
tained limit equation can be seen as a general-
ization of the classical Cauchy-Poisson equation
for incompressible flow.

6 Comparison with linear models in Eu-
lerian coordinates

The first order system is written in Eulerian

coordinates. The set of equations of [1] is ob-

tained. Compared to [3], our model retains more

terms because of two modelling choices: the fluid
is not assumed irrotational, and the density de-

pends not only on the pressure but also on the

temperature. The interest of our model is demon-
strated by numerical simulations.
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