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Abstract
In this talk, we consider solving the Helmholtz
equation posed in the exterior of a smooth ob-
stacle, with Neumann boundary conditions, and
using second-kind boundary integral equations
(BIEs). We study the h-version of the Galerkin
boundary element method, and its accuracy at
high-frequency.

The study of the behaviour of Galerkin error
when the frequency increases requires, in par-
ticular, high-frequency estimates for the consid-
ered boundary integral operators. In the case of
Dirichlet boundary condition, results are well-
known in the literature for the standard second-
kind BIE, but in the case of Neumann bound-
ary condition, where regularisation techniques
are commonly used, such estimates are rare.

Our contribution is twofold: we first present
high-frequency estimates for a particular reg-
ularised formulation in the case of Neumann
boundary conditions, and then, we present a
frequency-explicit bound for its discretisation
error.
Keywords: boundary integral equations, high-
frequency, Helmholtz, Neumann boundary con-
dition

1 Introduction
We are interested in scattering problems with
a smooth obstacle, and we consider solving the
Helmholtz equation ∆u+k2u = 0 using second-
kind BIEs posed in L2(Γ), where Γ is the bound-
ary of the obstacle. We consider the h-version
of the Galerkin boundary element method, i.e.,
we consider a sequence of piecewise-polynomial
approximation spaces with fixed polynomial de-
gree p and decreasing h.

The focus of our work is to understand how
quickly h needs to decrease with k to main-
tain accuracy of the Galerkin solution as k →

∞. For the finite element method, numerous
works have been published since the seminal
work of [1], and it is still the subject of ongo-
ing research. In the context of the boundary
element method, there has been fewer investi-
gations of this question, and they all focused on
the Dirichlet problem.

A standard approach for solving scattering
problems is to use “combined-field” BIEs, which
have the advantage to be well-posed for every
k > 0. Then, an intrinsic difficulty of the Neu-
mann problem is the presence of the hypersin-
gular operator, which is an operator of order 1,
so that the associated boundary integral opera-
tor is not bounded from L2(Γ) → L2(Γ).

A classical solution is to use regularised ver-
sions of the combined formulation, composing
the hypersingular operator with an operator of
order -1, in other words, we precondition the
hypersingular operator within the combined for-
mulation. Several regularisers have been intro-
duced, using approximation of pseudodifferen-
tial operators (see the recent review [4]), or in-
tegral operators and Calderón relations. We fo-
cused on the latter approach, where the regu-
lariser is a single-layer operator associated with
the complex frequency ik. This strategy was
introduced in [2], and studied in [3]. In our
work, we first derived new high-frequency es-
timates for these regularised formulations (see
our preprint [5]), and then, frequency-explicit
error bounds when using h-BEM to solve Neu-
mann problems with these operators.

2 High-frequency estimates
We studied the integral operators

Bk,η := iη

(
1

2
I −Kk

)
+ SikHk,

B′
k,η := iη

(
1

2
I −K ′

k

)
+HkSik,
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where η ∈ C \ {0} and Sk, Kk, K ′
k and Hk are

the standard single-, double-, adjoint-double-
layer and hypersingular operators defined for
k ∈ C. They both can be used to solve scat-
tering problems with Neumann condition, B′

k,η

in the context of an indirect formulation, and
Bk,η for a direct formulation.

We proved new upper bounds on the norm
of these operators. For example, when Γ is C∞,
we obtained

‖Bk,η‖L2(Γ)→L2(Γ) + ‖B′
k,η‖L2(Γ)→L2(Γ)

. |η|(1 + k1/4 log(k + 2)) + log(k + 2),

where . means lower or equal up to a multi-
plicative constant independent of k and h. We
also proved invertibility of these operators on
L2(Γ), and upper bounds on the norm of the
inverse, which is obtained expressing the in-
verse of these operators using the Dirichlet-to-
Neumann map and the Impedance-to-Dirichlet
map. The usual approach to derive bounds on
the inverse of the integral operators is to use
bounds on such maps. In the case of regularised
formulations, the major difficulty stems from
the fact that the Impedance-to-Dirichlet map
is associated with the following non-standard
problem:

{
∆u+ k2u = 0 in Ω

Sik∂
−
n u− iηγ−u = g on Γ.

It led us to study this problem to finally obtain,
for example when Γ is C∞ and nontrapping:

‖(Bk,η)
−1‖L2(Γ)→L2(Γ) + ‖(B′

k,η)
−1‖L2(Γ)→L2(Γ)

. k2/3,

where η is fixed.

3 Frequency-explicit error bounds
Equipped with the previous estimates, the next
step was to find sufficient conditions on h un-
der which we can obtain a frequency-explicit er-
ror bound. Note that, while results of this type
have been derived for the combined-field formu-
lation with Dirichlet boundary conditions, there
was, to our knowledge, no such result for the
Neumann problem.

Denoting Vh the approximation space, we
assume the following approximation property
minvh∈Vh

‖u − vh‖L2(Γ) . hp+1‖u‖Hp+1(Γ). We

first proved sufficient conditions for quasiopti-
mality: for k large enough, if

(hk)p+1 cond(Bk,η) . 1,

then the Galerkin solution uh exists, is unique,
and satisfies the quasioptimality property ‖u−
uh‖L2(Γ) . minvh∈Vh

‖u − vh‖L2(Γ). Then, us-
ing properties of the solution, we deduced that
under the previous sufficient condition, we have
the following error bound:

‖u− uh‖L2(Γ)

‖u‖L2(Γ)
. (cond(Bk,η))

−1,

with similar results holding for B′
k,η. This last

result associated with the previous estimates
gives a precise answer on how fast h needs to de-
crease to guarantee a frequency-explicit bound
on the relative error.
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