Scattering in a partially open waveguide: the forward problem

Laurent Bourgeois ${ }^{1, *}$, Sonia Fliss ${ }^{1}$, Jean-François Fritsch ${ }^{2}$, Christophe Hazard ${ }^{1}$, Arnaud Recoquillay ${ }^{2}$

${ }^{1}$ Laboratoire POEMS, ENSTA Paris, Palaiseau, France
${ }^{2}$ Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
*Email: laurent.bourgeois@ensta.fr

Abstract

We consider an acoustic scattering problem in a two-dimensional partially open waveguide, in the sense that the left part of the waveguide is closed, that is with a bounded cross-section, while the right part is bounded in the transverse direction by some Perfectly Matched Layers that mimic the situation of an open waveguide, that is with an unbounded cross-section. We prove well-posedness of such scattering problem, then propose and justify artificial conditions in the longitudinal direction based on Dirichlet-to-Neu mann maps.

Keywords: Open waveguide, PMLs, DtN operators, Kondratiev theory

1 Introduction

Let us introduce the domains $\Omega^{-}:=(-\infty, 0) \times$ $(-h, h), \Omega^{+}:=(0,+\infty) \times\left(-h_{\text {out }}, h_{\text {out }}\right)$ and $\Omega:=$ $\Omega^{-} \cup \Sigma_{0} \cup \Omega^{+}$, with $\Sigma_{0}:=\{0\} \times(-h, h)$, as well as a bounded domain $O \subset(0,+\infty) \times(-h, h)$. We consider the problem: find u such that

$$
\left\{\begin{align*}
P u & =0 & & \text { in } \Omega \backslash \bar{O}, \tag{1}\\
\partial_{\nu} u & =0 & & \text { on } \partial \Omega, \\
u & =0 & & \text { on } \partial O, \\
u-u^{i} & \text { is outgoing, } & &
\end{align*}\right.
$$

where ν is the outward unit normal vector to $\partial \Omega, u^{i}$ is a mode coming from the left waveguide, and the differential operator P is defined by

$$
P:=-\partial_{y}\left(\alpha \mu \partial_{y} \cdot\right)-\frac{\mu}{\alpha} \partial_{x x} \cdot-\frac{\mu}{\alpha} k^{2},
$$

with $(\alpha, \mu, k):=\left(1, \mu_{0}, k_{0}\right)$ in $\mathbb{R} \times(-h, h)$ (blue zone), $(\alpha, \mu, k):=\left(1, \mu_{\infty}, k_{\infty}\right)$ in
$(0,+\infty) \times\left(\left(-h_{\text {in }},-h\right) \cup\left(h, h_{\text {in }}\right)\right)$ (pink zone) and $(\alpha, \mu, k):=\left(\alpha_{\infty}, \mu_{\infty}, k_{\infty}\right)$ in
$(0,+\infty) \times\left(\left(-h_{\text {out }},-h_{\text {in }}\right) \cup\left(h_{\text {in }}, h_{\text {out }}\right)\right)$ (brown zone), with α_{∞} a complex constant such that $\arg \left(\alpha_{\infty}\right) \in\left(-\frac{\pi}{2}, 0\right)$. We also assume that $k_{0}<$ k_{∞}. The objective is to prove well-posedness of problem (1) in a appropriate functional space.

2 The uniform PML-waveguide

Let us consider the straight waveguide $\Omega_{\text {out }}:=$ $\mathbb{R} \times I_{\text {out }}$ with $I_{\text {out }}:=\left(-h_{\text {out }}, h_{\text {out }}\right)$, the coefficients of P being those of Ω^{+}: for a given f, find the outgoing solution u to the problem

The solutions in the form $u(x, y)=e^{\lambda x} \varphi(y)$ to problem (2) for $f=0$ are called the modes. To specify them, we introduce the operator $\mathcal{L}(\lambda)$:

$$
\begin{aligned}
& H^{1}\left(I_{\text {out }}\right) \rightarrow H^{1}\left(I_{\text {out }}\right)^{*} \text { defined by } \\
& \langle\mathcal{L}(\lambda) \varphi, \psi\rangle\rangle_{H^{1}\left(I_{\text {out }}\right)^{*}, H^{1}\left(I_{\text {out }}\right)}:= \\
& \quad \int_{I_{\text {out }}}\left(\alpha \mu d_{y} \varphi d_{y} \psi-\frac{\mu}{\alpha}\left(\lambda^{2}+k^{2}\right) \varphi \psi\right) d y,
\end{aligned}
$$

for all $\varphi, \psi \in H^{1}\left(I_{\text {out }}\right)$. We denote by Λ the discrete set of $\lambda \in \mathbb{C}$ for which there exists a non zero eigenvector $\varphi \in H^{1}\left(I_{\text {out }}\right)$ such that

$$
\begin{equation*}
\mathcal{L}(\lambda) \varphi=0 \tag{3}
\end{equation*}
$$

We assume that any eigenvector φ satisfies $\int_{I_{\text {out }}} \frac{\mu}{\alpha} \varphi^{2} d y \neq 0$, which guarantees that the λ_{n} are simple eigenvalues, both geometrically and algebraically. In addition, the fact that $k_{0}<k_{\infty}$ enables us to write $\Lambda=\cup_{n=0}^{+\infty}\left\{-\lambda_{n}, \lambda_{n}\right\}$ with

$$
\cdots \leq \Re e\left(\lambda_{n+1}\right) \leq \Re e\left(\lambda_{n}\right) \leq \cdots \leq \Re e\left(\lambda_{0}\right)<0 .
$$

If the φ_{n} satisfy (3) for $\lambda= \pm \lambda_{n}$, up to a rescaling we have the biorthogonality condition
$\int_{I_{\text {out }}} \frac{\mu}{\alpha} \varphi_{n} \varphi_{m} d y=\delta_{m n}$. The modes (divided into leaky and PMLs modes) are given by $w_{n}^{ \pm}(x, y)=$ $e^{ \pm \lambda_{n} x} \varphi_{n}(y)$ and are all evanescent. Since the transverse operator \mathcal{L} is not self-adjoint, the φ_{n} do not form a complete orthonormal basis of $L^{2}\left(I_{\text {out }}\right)$: the classical projection method used for a closed uniform waveguide fails. This is why we used the Kondratiev theory (see [1] for details and references) as the main ingredient of the proofs of both following theorems.
We introduce the space $\mathcal{W}_{\beta}^{1}\left(\Omega_{\text {out }}\right)$ as the set of $v \in \mathcal{D}^{\prime}\left(\Omega_{\text {out }}\right)$ such that $e^{-\beta|x|} v, e^{-\beta|x|} \partial_{x} v$ and $e^{-\beta|x|} \partial_{y} v$ belong to $L^{2}\left(\Omega_{\mathrm{out}}\right)$.

Theorem 1 For $f \in H^{1}\left(\Omega_{\text {out }}\right)^{*}$, the problem (2) has a unique solution $u \in H^{1}\left(\Omega_{\text {out }}\right)$. Furthermore, if $\beta>0$ is such that Λ has no intersection with the line $\ell_{-\beta}:=-\beta+i \mathbb{R}$ and $f \in \mathcal{W}_{\beta}^{1}\left(\Omega_{\text {out }}\right)^{*}$, denoting $\Lambda \cap\{\lambda \in \mathbb{C},-\beta<$ $\Re e \lambda<0\}=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N_{\beta}-1}\right\}$, there exist some complex numbers a_{n}^{+}, a_{n}^{-}and a function $\tilde{u} \in \mathcal{W}_{-\beta}^{1}\left(\Omega_{\text {out }}\right)$ such that

$$
u=\chi^{+} \sum_{n=0}^{N_{\beta}-1} a_{n}^{+} w_{n}^{+}+\chi^{-} \sum_{n=0}^{N_{\beta}-1} a_{n}^{-} w_{n}^{-}+\tilde{u}
$$

where $\chi^{ \pm} \in C^{\infty}(\mathbb{R}), \chi^{ \pm}=1$ for $\pm x \geq 2 L$ and $\chi^{ \pm}=0$ for $\pm x \leq L$.

Remark 2 Since $k_{0}<k_{\infty}$, the radiation condition simply consists here to search the solution in $H^{1}\left(\Omega_{\mathrm{out}}\right)$, which guarantees its uniqueness.

3 The scattering problem of interest

In order to analyze problem (1), we formulate an equivalent one set in the bounded domain D_{M}, that is the domain $\Omega \backslash \bar{O}$ truncated by the sections Σ_{0} and $\Sigma_{M}:=\{M\} \times\left(-h_{\text {out }}, h_{\text {out }}\right)$. We introduce the DtN operator

$$
\begin{aligned}
T_{0}: H^{1 / 2}\left(\Sigma_{0}\right) & \rightarrow H^{1 / 2}\left(\Sigma_{0}\right)^{*} \\
\varphi & \mapsto T_{0} \varphi=-\left.\mu_{0} \partial_{x} u^{-}\right|_{\Sigma_{0}}
\end{aligned}
$$

where u^{-}is the solution to the left half-waveguide problem with Dirichlet data φ on Σ_{0}, and the DtN operator with an overlap $(M-L)$

$$
\begin{aligned}
T_{L, M}: H^{1 / 2}\left(\Sigma_{L}\right) & \rightarrow H^{1 / 2}\left(\Sigma_{M}\right)^{*} \\
\varphi & \mapsto T_{L, M} \varphi=\left.\frac{\mu}{\alpha} \partial_{x} u^{+}\right|_{\Sigma_{M}}
\end{aligned}
$$

where u^{+}is the solution to the right half-waveguide problem with Dirichlet data φ on Σ_{L}, with $L \leq$
M. That the operator T_{0} is well-defined and has the form of a series is classical. Using the first part of the previous theorem and a symmetry argument, we prove that $T_{L, M}$ is well-defined as well. Then we introduce the problem set in D_{M} : find $u \in H^{1}\left(D_{M}\right)$ such that

$$
\left\{\begin{align*}
P u & =0 & & \text { in } D_{M} \tag{4}\\
\partial_{\nu} u & =0 & & \text { on } \Gamma_{M} \\
u & =0 & & \text { on } \partial O \\
-\mu_{0} \partial_{x} u & =T_{0}\left(\left.u\right|_{\Sigma_{0}}\right)-2 \mu_{0} \partial_{x} u^{i} & & \text { on } \Sigma_{0} \\
\frac{\mu}{\alpha} \partial_{x} u & =T_{L, M}\left(\left.u\right|_{\Sigma_{L}}\right) & & \text { on } \Sigma_{M}
\end{align*}\right.
$$

with $\Gamma_{M}=\partial D_{M} \backslash\left(\Sigma_{0} \cup \Sigma_{M} \cup \partial O\right)$. Having in mind the numerical computation of the solution, we also introduce an operator which approximates the DtN operator $T_{L, M}$ with the help of the eigenvalues and eigenfunctions $\left(\lambda_{n}, \varphi_{n}\right)$ of the transverse operator \mathcal{L}, that is for a fixed $\beta>0, T_{L, M}(\varphi)$ is replaced for $\varphi \in H^{1 / 2}\left(\Sigma_{L}\right)$ by
$T_{L, M}^{\beta}(\varphi)=\sum_{n=0}^{N_{\beta}-1} \frac{\mu}{\alpha} \lambda_{n} e^{\lambda_{n}(M-L)}\left(\int_{\Sigma_{L}} \frac{\mu}{\alpha} \varphi \varphi_{n} d y\right) \varphi_{n}$.
Theorem 3 Problems (1) and (4) are equivalent. Problem (4) has a unique solution u in $H^{1}\left(D_{M}\right)$ iff the same problem for $u^{i}=0$ has only the trivial solution. Moreover, using the same assumption on β and the same notation as in Theorem 1, there exist some complex numbers a_{n}^{+}and a function $\tilde{u} \in \mathcal{W}_{-\beta}^{1}\left(\Omega^{+} \backslash \bar{O}\right)$ such that $\left.\tilde{u}\right|_{\partial O}=0$ satisfying in $\Omega^{+} \backslash \bar{O}$

$$
u=\chi^{+} \sum_{n=0}^{N_{\beta}-1} a_{n}^{+} w_{n}^{+}+\tilde{u}
$$

For a fixed L and M large enough, if problem (1) is well-posed, then the problem (4) with operator $T_{L, M}$ replaced by $T_{L, M}^{\beta}$ is well-posed as well. Moreover, denoting $u_{L, M}^{\beta}$ the corresponding solution, there exists a constant $C_{\beta}>0$ which is independent of M such that

$$
\left\|u-u_{L, M}^{\beta}\right\|_{H^{1}\left(D_{L}\right)} \leq C_{\beta} e^{-\beta(M-L)}\|u\|_{H^{1}\left(\Omega^{+} \backslash \bar{O}\right)}
$$

References

[1] L. Bourgeois, S. Fliss, J.-F. Fritsch, C. Hazard and A. Recoquillay, Scattering in a partially open waveguide: the forward problem, submitted.

