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Abstract

We investigate the problem of finding the opti-
mal shape and topology of a system of acoustic
lenses in a dissipative medium, where the sound
propagation is governed by a general semilin-
ear strongly damped wave equation. We in-
troduce a phase-field formulation of this prob-
lem through diffuse interfaces between the lenses
and the surrounding fluid. The resulting formu-
lation is shown to be well-posed and we rigor-
ously derive first-order optimality conditions for
this problem. Additionally, we establish a rela-
tion between the diffuse interface problem and a
perimeter-regularized sharp interface shape op-
timization problem via the I'-limit of the re-
duced objective. The talk is based on [1].
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1 Introduction

We consider an acoustic lens system in a ther-
moviscous fluid. A number of acoustic lenses
Q1,...,8y, of the same material are immersed
in an acoustic fluid Qf, n € N; see Figure 1.
The material parameters corresponding to the
lens are given by (¢, by, ki) and to the fluid by
(cf,bf,ky). Here ¢; > 0 is the speed of sound,
b; > 0 the sound diffusivity, and k; € R is the
nonlinearity coefficient, where i € {l, f}.

The goal is to determine the number and
shape of acoustic lenses so that we reach the de-
sired pressure distribution ugq € L2(0,T; L*(2))
in some region of interest D C 2, where Q C R¢,
d € {2,3}, is a hold-all domain, assumed to be
Lipschitz regular. Let T > 0 denote the final
time of propagation. Assuming that we have a
high-intensity or high-frequency sound source,
the propagation of sound waves is nonlinear. We
can obtain the pressure field u by solving

oz, tyug — div(®Vau) — div(bVuy) = f(uy)

on 2x(0,T), with the right-hand side nonlinear-
ity given by f(u¢) = 2ku?. The medium param-
eters are piecewise constant functions, defined
as

¢ =axe, + (1= xay),

b=bixq, +b7(1 = xa,), (1)

k=kixa, + k(1 —xa,)

n
with Q; = U ;. We assume that the coeffi-
j=1
cient o does not degenerate, that is, we assume
that there exist a, @ > 0, such that

a<a(zrt)<a a.e. in @ x (0,7). (2)

Equation (1) can be seen as a semi-linearization
of the Westervelt equation obtained by freezing
the term o(u) = 1 — 2ku. The sound waves
are excited via boundary in form of Neumann
boundary conditions

g on I'=09, (3)

where n denotes the unit outward normal to I’
and the problem is additionally supplemented
with initial conditions.

2 A phase-field approach

We next introduce a continuous material repre-
sentation between lenses and fluid by employing
diffuse interfaces &, i € [1,n], with thickness
proportional to € > 0. We define a partition

Q:QfUEUQl

of Q, where £ = |J!_; & and then also introduce
a phase-field function ¢, such that
p(x) =1 for x € Qy,
0<p(x) <1 forz €, (4)
o(xr) =0 for x € Q;
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see Figure 1. In the phase-field setting, the fluid
region {1y and the lens region ); are hence sep-
arated by a diffuse interface. On the diffuse in-
terface, the material properties are interpolated
with respect to the phase-field function as fol-
lows: s ) )
¢ = +p(@)(c; — ),
b="b+ p(x)(by — by), (5)
k =k + o(x)(kf — k),

where we assume ¢; < ¢y, by < by, and k; < ky.

Figure 1: The acoustic lens system with a phase-
field interface.

To formulate the problem, we employ a tracking-
type objective and use a perimeter penalization
to overcome ill-posedness of the sharp interface
problem. We approximate it in the diffuse in-
terface setting by a multiple of the Ginzburg—
Landau energy FE:

5 1
V|2 + =0 (p)dz, if o € HY(Q),
bt < L] 5196 L, it e B@)

400, otherwise.

Here ¥ is a double obstacle potential given by

Wo(p if 0<p<1,
ww:{ o

400, otherwise,

with

To(p) = %w(l - ).

The shape optimization problem then has the
following phase-field formulation:

(u,p)

where v > 0 is a weighting parameter, with

Dy ={pe H(Q)NL®Q):0<p<1ae},

min J( //u—ud dads + vE:(p),

2
such that
auy — div(c?(¢)Vu) — div(b()Vug) = 2k(p)u?,
8U 8ut

2 R _— =
c (@)an + b(p) 5, =9 o L,

(u’ ut)|t=0 = (O’ O)v
(6)
is satisfied (in a weak sense) and the medium
parameters satisfy (5).

The function ¢ € ®,q is thus the design vari-
able with {x € Q : p(z) = 1} modeling the fluid
region and {z € Q: ¢(x) = 0} the lenses.

For the well-posedness of the state problem
and the corresponding adjoint problem as well
the proof of the existence of a minimizer, we
refer to [1].

Theorem 1 (Optimality system) Letp € ®yq
be the minimizer of the optimal control problem
(2)-(6) and u and p the associated state and ad-
joint vartables, respectively. Then the functions
(u,0,p) € UxXxPogx HY(0,T; HY(Q)) satisfy the
following optimality system in the weak sense:
the state problem (6), the adjoint problem

apy — div(e? () Vp) + div(b(¢) V)

= —(4k(p)ust + ap)p — 2(ou + 2k(0)ug)py)
+(u—uq)xp in Qx(0,7),

Op Ops
2 -
C()E)n b()an 0 on T,

(p, pe)le=T = (0,0),

and the gradient inequality

WE/QVSO-V(@—@derW/S]W’(w)(sf)—w)dx

/ / (2¢(¢p & — ©)Vu(t)

+ () (P — p)Vue(t)) - Vpdads

T
4 / / W ()3 — ©)u(pdads > 0, V5 € Dag.
0 (9]

Theorem 2 Under the assumptions of the well-
posedness of state and adjoint problems, the re-
duced cost functionals {j: }e>0, where jo = j:(p),
I'-converge in LY() to jo as e \, 0.
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