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Abstract

We present a Finite Element (FE) formulation
for waves in viscous, compressible �uids cou-
pled to solid bodies described by linear elastic-
ity. In doing so, we allow for non-conforming
grids based on the Nitsche-type mortaring.
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1 Formulation

We consider an elastic solid coupled to a vis-
cous, compressible �uid along with a common
interface as displayed in Fig. 1. The behavior of

solid

fluid

Figure 1: Simple sketch of a solid-�uid interac-
tion problem

the solid is described by the balance of momen-
tum and a suitable constitutive law (Hooke's
law). The governing equations in the �uid do-
main Ωf are the balance of mass and momentum
as well as an equation of state and constitutive
law (Newtonian �uid). By applying a perturba-
tion ansatz via a splitting of the total quantities
(pressure, density and velocity) into a mean part
and a �uctuating one, neglecting the non-linear
terms and using the linearized equation of state
between density perturbation ρ and pressure p
via ρ = p

c20
(c donates the isentropic speed of

sound), we arrive at

1

c20

∂p

∂t
+ ρ0∇ · v = 0 in Ωf , (1)

ρ0
∂v

∂t
−∇ · σf = 0 in Ωf . (2)

In (1), (2) p denotes the acoustic pressure, v
the acoustic particle velocity, and σf the �uid

stress tensor, which computes for an isotropic
Newtonian �uid by

σf = −pI + µ
(∇v + (∇v)T

)
(3)

+(λ− 2

3
µ)(∇ · v)I , (4)

where µ is the dynamic (shear) viscosity and
λ the bulk viscosity. The elastic solid in Ωs is
governed by the conservation of momentum

ρs
∂2u

∂t2
−∇ · σs = 0 in Ωs , (5)

where the solid density is denoted by ρs, u is
the mechanical displacement vector and σs is
the mechanical stress tensor. At the interface
Γsf between solid and �uid, one needs to enforce
the dynamic and kinematic conditions requiring
continuity of traction and velocity, respectively.
Traction continuity is enforced by requiring

σs · ns = −σf · nf on Γsf , (6)

where nf and ns are the outer normal of the
�uid and solid domain, respectively (see Fig. 1).
The second interface condition is velocity conti-
nuity at the interface, which requires

∂u

∂t
= v on Γsf . (7)

To obtain the Nitsche coupled formulation, we
combine the weak forms of the partial di�eren-
tial equations (PDEs) for the viscous �uid and
elastic solid and incorporate (6), (7) to arrive at

∫

Ωf

ρfv
′ · ∂v
∂t

dΩ +

∫

Ωf

∇v′ : σf dΩ

+

∫

Ωs

ρsu
′ · ∂

2u

∂t2
dΩ +

∫

Ωs

∇u′ : σs dΩ

−
∫

Γsf

(u′ − v′) · σs · n dΓ

︸ ︷︷ ︸
traction consistency

+β
p2

e

he

∫

Γsf

(u′ − v′) · (
∂u

∂t
− v) dΓ

︸ ︷︷ ︸
penalty

= 0 . (8)
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To meet the inf-sup (Ladyzhenskaya-Babu²ka-
Brezzi) condition, we use a one-order higher poly-
nomial basis function for particle velocity v than
that for the acoustic pressure p [1, 2].

2 Validation

To validate our formulation for a viscous �uid,
we consider a Stokes boundary layer generated
by an in�nitely long plate, which oscillates with
a velocity v̂ cos(ωt) in x-direction and ful�lling
the solution

vy = v̂Re

{
eiωt e

− 1+i√
2

√
ρω
µ
y
}
. (9)

The computational domain is displayed in Fig.
2 for a graded mesh and the convergence behav-
ior of the error both for h− and p− re�nement
is shown in Fig. 3. The results clearly demon-

Figure 2: Computational domain with graded
mesh

Figure 3: Convergence of h- and p-FEM on
graded mesh

strates the superiority of p-FEM on a graded
mesh.

3 Application

As a practical application, we consider a micro-
electro-mechanical system (MEMS) speaker as
displayed in Fig. 4. To further decrease the
computational time, we apply the linearized bal-
ance of mass and momentum of the viscous �uid
(viscous PDEs) just in the channel and in a
small region surrounding the ambient air, and
then couple it to the standard wave equation
again via a non-conforming grid to compute the
radiated sound (see Fig. 5). The computational
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Figure 4: Computational setup for MEMS
speaker

Figure 5: Computational grid

results are displayed in Fig. 6 both scaled for the
channel part, where the viscous e�ect is strongly
present and for the ambient air.
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Figure 6: Computed acoustic pressure in the
channel and radiated to the ambient air

Currently, we extend our formulation to include
also moving structures via an ALE (Arbitrary
Lagrangian - Eulerian) formulation and apply
it to a MEMS speaker based on digital sound
reconstruction using moving shutter gates.
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