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Non-conforming and moving grids for the simulation of waves in viscous fluids
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Abstract

We present a Finite Element (FE) formulation
for waves in viscous, compressible fluids cou-
pled to solid bodies described by linear elastic-
ity. In doing so, we allow for non-conforming
grids based on the Nitsche-type mortaring.
Keywords: waves in viscous compressible fluids,
finite elements, non-conforming grids

1 Formulation

We consider an elastic solid coupled to a vis-
cous, compressible fluid along with a common
interface as displayed in Fig. 1. The behavior of
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Figure 1: Simple sketch of a solid-fluid interac-
tion problem

the solid is described by the balance of momen-
tum and a suitable constitutive law (Hooke’s
law). The governing equations in the fluid do-
main ¢ are the balance of mass and momentum
as well as an equation of state and constitutive
law (Newtonian fluid). By applying a perturba-
tion ansatz via a splitting of the total quantities
(pressure, density and velocity) into a mean part
and a fluctuating one, neglecting the non-linear
terms and using the linearized equation of state
between density perturbation p and pressure p

via p = % (¢ donates the isentropic speed of

sound), we arrive at
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In (1), (2) p denotes the acoustic pressure, v
the acoustic particle velocity, and o the fluid

stress tensor, which computes for an isotropic
Newtonian fluid by

or = —pl+u(Vv+ (Vo)) (3)
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where g is the dynamic (shear) viscosity and

A the bulk viscosity. The elastic solid in € is

governed by the conservation of momentum
0*u

psﬁ—VwIS:O in Qg, (5)

where the solid density is denoted by ps, w is
the mechanical displacement vector and oy is
the mechanical stress tensor. At the interface
I'st between solid and fluid, one needs to enforce
the dynamic and kinematic conditions requiring
continuity of traction and velocity, respectively.
Traction continuity is enforced by requiring

os-ng=—0o¢-ny on Ly, (6)

where n; and mg are the outer normal of the
fluid and solid domain, respectively (see Fig. 1).
The second interface condition is velocity conti-
nuity at the interface, which requires

0

8—1; =v on . (7)
To obtain the Nitsche coupled formulation, we
combine the weak forms of the partial differen-
tial equations (PDEs) for the viscous fluid and
elastic solid and incorporate (6), (7) to arrive at
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traction consistency
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To meet the inf-sup (Ladyzhenskaya-Babugka-
Brezzi) condition, we use a one-order higher poly-
nomial basis function for particle velocity v than
that for the acoustic pressure p [1,2].

2 Validation

To validate our formulation for a viscous fluid,
we consider a Stokes boundary layer generated
by an infinitely long plate, which oscillates with
a velocity 0 cos(wt) in z-direction and fulfilling
the solution
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The computational domain is displayed in Fig.
2 for a graded mesh and the convergence behav-
ior of the error both for h— and p— refinement
is shown in Fig. 3. The results clearly demon-
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Figure 2: Computational domain with graded
mesh
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Figure 3: Convergence of h- and p-FEM on
graded mesh

strates the superiority of p-FEM on a graded
mesh.

3 Application

As a practical application, we consider a micro-
electro-mechanical system (MEMS) speaker as
displayed in Fig. 4. To further decrease the
computational time, we apply the linearized bal-
ance of mass and momentum of the viscous fluid
(viscous PDEs) just in the channel and in a
small region surrounding the ambient air, and
then couple it to the standard wave equation
again via a non-conforming grid to compute the
radiated sound (see Fig. 5). The computational
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Figure 4: Computational setup for MEMS
speaker

Figure 5: Computational grid

results are displayed in Fig. 6 both scaled for the
channel part, where the viscous effect is strongly
present and for the ambient air.
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Figure 6: Computed acoustic pressure in the
channel and radiated to the ambient air

Currently, we extend our formulation to include
also moving structures via an ALE (Arbitrary
Lagrangian - Eulerian) formulation and apply
it to a MEMS speaker based on digital sound
reconstruction using moving shutter gates.
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