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Abstract

We extend the operator preconditioning frame-
work [1] to Petrov-Galerkin methods while ac-
counting for parameter-dependent perturbations
of both variational forms and their precondi-
tioners, as occurs when performing numerical
approximations. By considering different per-
turbation parameters for the original form and
its preconditioner, our bi-parametric abstract
setting leads to robust and controlled schemes.
For Hilbert spaces, we derive exhaustive linear
and super-linear convergence estimates for it-
erative solvers, such as h-independent conver-
gence bounds, when preconditioning with low-
accuracy or, equivalently, with highly compre-
ssed approximations.
Keywords: Operator preconditioning, Galerkin
methods, Numerical approximation, Iterative lin-
ear solvers

1 Introduction

In this note, we extend the framework of opera-
tor preconditioning (OP) from Bubnov-Galer-
kin to general Petrov-Galerkin methods (OP-
PG) as well as analyze the effects of numeri-
cal perturbations in iterative solvers. In this
regard, we provide estimates for spectral and
Euclidean condition numbers with details found
in [2]. Next, we consider parameter-dependent
perturbed problems and introduce the bi-parap-
metric OP paradigm used, for example, for fast
Calderón preconditioning [3, 6]. This allows for
explicit bounds on spectral and Euclidean con-
dition numbers with respect to perturbations.
We further deduce linear convergence results for
GMRES(m) when working on Hilbert spaces.

2 Bi-parametric Operator Precondition-
ing

Let X, Y , V and W be reflexive Banach spaces
and let a ∈ L(X×Y ;C) be a continuous complex
sesqui-linear form, with induced operator A and
norm ‖a‖. Similarly for c ∈ L(V ×W ;C), n ∈
L(V × Y ;C), m ∈ L(X ×W ;C). For a linear

form b ∈ Y ′, the weak continuous problem is:
seek u ∈ X such that

a(u, v) = b(v), ∀ v ∈ Y. (1)

Given an index h > 0, we introduce finite-di-
mensional conforming spaces, i.e. Xh ⊂ X and
Yh ⊂ Y , and assume that dim(Xh) = dim(Yh) =:
N , with N → ∞ as h → 0. Same occurs for
Vh ⊂ V and Wh ⊂ W . The counterpart of (1)
is the weak discrete problem: find uh ∈ Xh such
that

a(uh, vh) = b(vh), ∀ vh ∈ Yh. (2)

We build the stiffness Galerkin matrix and right-
hand side

A := (a(ϕj , φi))
N
i,j=1, b := (bh(φi))

N
i=1,

span{ϕi}Ni=1 = Xh, span{φi}Ni=1 = Yh. For
span{ψi}Ni=1 = Vh, span{ξi}Ni=1 = Wh, we have

C := (a(ψj , ξi))
N
i,j=1, N := (n(ϕj , ξi))

N
i=1

and M := (n(ψj , φi))
N
i=1.

We are ready to give a notion of admissible
perturbations needed for the ensuing analysis.

Definition 1 ((h, ν)-perturbation) Let ν ∈
[0, 1) and h > 0 be given. We say that aν ∈
L(X × Y ;C) is a (h, ν)-perturbation of a if it
belongs to the set Φh,ν(a):

aν ∈ Φh,ν(a) ⇐⇒
γ−1A |a(uh, vh)− aν(uh, vh)| ≤ ν‖uh‖X‖vh‖Y ,
∀ uh ∈ Xh, ∀ vh ∈ Yh.

Likewise, we define bν ∈ Y ′ as being a (h, ν)-
perturbation of b.

Inspired by [1], we state the preconditioned ver-
sion of the operator equation for PG Galerkin:
seek u ∈ X such that

((CA)) : PAu = Pb, with P := M−1CN−1.

Its perturbed matrix version reads: find uν ∈
CN such that

((CA))µ,ν : PµAνuν = Pµbν ,

with Pµ := M−1CµN
−1.
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Theorem 2 (Bi-Parametric OP-PG [2]) For
the perturbed problem ((CA))µ,ν for µ, ν ∈ [0, 1)
and h > 0, the spectral condition number is
bounded as

κS(PµAν) ≤ K?

(
1 + µ

1− µ

)(
1 + ν

1− ν

)
=: K?,µ,ν .

with K? the original estimate for OP in [1].

3 Iterative Solvers Performance: Hilbert
space setting

Consider X ≡ H with H being a Hilbert space
with inner product (·, ·)H and ‖ · ‖H =

√
(·, ·)H .

We introduce the H-field of values VH(·) [4].

Assumption 1 For ((CA))µ,ν with X := H be-
ing a Hilbert space, assume that there holds that

γCµγAν

‖m‖‖n‖ ≤ VH(Ph,µAh,ν) and

γMγN
‖cµ‖‖aν‖

≤ VH((Ph,µAh,ν)−1).

With this, we can apply the linear convergence
results for GMRES to ((CA))µ,ν [2].

Theorem 3 Consider ((CA))µ,ν along with As-
sumption 1. Then, the numerical radius for the
weighted GMRES(m) for 1 ≤ k,m ≤ N is boun-
ded as

Θ
(m)
k ≤

(
1− 1

K?,µ,ν

) 1
2

. (3)

4 Fast Calderón Preconditioning

We test our ideas by using the bi-parametric
framework to the Calderón preconditioned EFIE
[5] for a complex shape [6]. Rough approxima-
tions are implied by the H-matrix tolerance and
quadrature rules. Besides providing similar con-
vergence results for the Euclidean GMRES(m)
(see Fig. 1), one also observes significant gains
in computational time and memory usage.

5 Conclusion

For general Petrov-Galerkin methods, we con-
sidered their operator preconditioning and in-
troduced the novel bi-parametric framework. Sev-
eral results were derived including bounds in
Euclidean norm for the convergence of iterative
solvers when preconditioning, with GMRES as
a reference. These results pave the way toward
new paradigms for preconditioning, as they al-
low to craft robust preconditioners, better un-
derstand the efficiency of existing ones and re-
late them to experimental results.
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Figure 1: Destroyer for N = 108, 570
dofs: Squared current density (top) and GM-
RES(1,500) iterations (bottom). Remark that
the rough approximation for Calderón precon-
ditioner (blue dashed line) behaves similarly to
its uncompressed version (blue line).
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