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Abstract

The scattering of long waves by an obstacle in
a rigid pipe is considered. Various approxima-
tions are obtained. These involve the blockage
coefficient, which is a far-field quantity associ-
ated with potential flow along the pipe.
Keywords: acoustics, matched asymptotics

1 Introduction

Many years ago, the first author co-authored a
paper [4] in which matched asymptotics were
used for a two-dimensional waveguide problem.
The waveguide occupies the strip |x| < a, −∞ <
z < ∞ in the xz-plane. It contains a bounded
obstacle B (with boundary S) which is assumed
to be symmetric about the line z = 0. A low-
frequency plane wave is incident on B, and is
partly reflected and partly transmitted. Thus,
with e−iωt suppressed, the solution u satisfies

u ∼
{

eikz +R e−ikz, z → −∞,
T eikz, z →∞, (1)

together with (∇2 + k2)u = 0 in the waveguide,
∂u/∂x = 0 at x = ±a (the boundary is sound-
hard (rigid)) and a boundary condition on S.
The problem is to estimate the reflection co-
efficient R and the transmission coefficient T ,
assuming that ka� 1.

Intuitively, we might expect Laplace’s equa-
tion ∇2u = 0 to be appropriate near B. Indeed,
this is part of the story, but not the whole story.
Historically, Lamb followed the intuitive path
for a hard circular S, and he obtained a wrong
estimate for R, whereas Twersky obtained the
correct result some years later; see [4] for de-
tails and references.

In [4], two inner problems are identified, one
for ∇2u = 0, and one for Poisson’s equation,
∇2u = 1. The first of these requires the de-
termination of a certain constant, known as the
blockage coefficient. This constant is needed in
the matching between the outer expansion of
the inner solution, and the inner expansion of
the outer (wave-like) solution.

More recently, the authors have generalized
the basic methods from [4] (which apply to two-
dimensional problems with sound-hard obsta-
cles) to three-dimensional problems in which long
waves along a rigid cylindrical waveguide inter-
act with an obstacle B; the boundary of B, S,
can be hard (rigid, Neumann condition) or soft
(Dirichlet condition) [5]. Here, we describe our
recent work on rigid obstacles, with some re-
marks on soft obstacles in section 4.

2 A rigid body in a rigid pipe

Consider a cylindrical pipe of infinite length con-
taining an obstacle B. Both the pipe’s wall and
the boundary of B are rigid. Assume that B
is symmetric about the plane z = 0, where the
z-axis is along the pipe. The solution u satisfies
(1). In [5], estimates for R and T are obtained:

R = Ds −Da, T = 1 +Ds +Da

where

Ds =
iκM

1− iκM
, Da =

iκL

1− iκL
,

κ = ka, a is defined by equating the pipe’s cross-
sectional area to πa2,M = −|B|/(2πa3) and |B|
is the volume of the body B. The quantity L is
the blockage coefficient; see section 3.

The approximations found for R and T sat-
isfy known constraints, |R|2 + |T |2 = 1 and
RT ∗ + R∗T = 0, exactly, where the ∗ denotes
complex conjugation. They also agree with rig-
orous long-wave asymptotic approximations for
a sphere in a pipe of circular cross-section [2].

3 The blockage coefficient

The blockage coefficient L is a dimensionless
constant defined uniquely by solving a boundary-
value problem for a potential Φ: ∇2Φ = 0 in the
pipe, the normal derivative ∂Φ/∂n = 0 on the
pipe’s wall and on S, and Φ satisfies

Φ = (z/a)± L+ o(1) as z → ±∞; (2)
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the far-field conditions (2) eliminate an arbi-
trary additive constant. We see that Φ is the ve-
locity potential for uniform flow along the pipe;
L can be regarded as giving a measure of the
obstruction, or blockage, to the flow caused by
the presence of the body in the pipe.

In order to use our simple approximations
for R and T , we need L, but we do not want to
solve the full boundary-value problem for Φ: it
is complicated! If the pipe is a circular cylinder
(a tube) we could contemplate solving a bound-
ary integral equation over S using Green’s func-
tion for the tube [3].

We do have Hurley’s useful exact formula [1]

L =
1

2πa2

∫

S
Φ
∂z

∂n
dS, (3)

where the normal vector on S points outwards.
This formula relates the far-field quantity L to
Φ evaluated on S, a near-field quantity.

If B is small (with diameter small compared
to the diameter of the pipe’s cross-section), we
could replace Φ in (3) by the corresponding pot-
ential for flow past B in an infinite fluid. Doing
this works well; see [5] for examples.

For thin objects in a tube, such as a rigid disc
in the plane z = 0, approximations can be de-
veloped using dual integral equations when the
centre of the disc is on the axis of the tube.
Of interest are situations where the disc almost
blocks the tube, leaving a small gap between the
edge of the disc and the tube wall; see [6].

Suppose now that B is slender and aligned
with the flow; for example, B could be a prolate
spheroid with its axis along the z-axis. Such
geometries recall Webster’s horn equation: for
waves along a rigid pipe of slowly-varying cross-
section (the horn), the three-dimensional wave
equation may be approximated by

1

A(z)

∂

∂z

(
A(z)

∂u

∂z

)
=

1

c2
∂2u

∂t2
, (4)

where A(z) is the cross-sectional area at sta-
tion z; the derivation of (4) assumes that the
horn is rigid, with ∂u/∂n = 0 on the bound-
ary. We can use (4) for wave propagation along
the pipe containing a slender body B; in this
context, A(z) is the area of the annular fluid
cross-section. When applied to the estimation
of L (no dependence on t), we obtain an ordi-
nary differential equation; solving it gives

L =
1

2a

∫
πa2 −A(z)

A(z)
dz, (5)

note that A(z) = πa2 outside B. It turns out
that this simple formula works remarkably well,
and it also gives good approximations when B
almost fills the waveguide; for details and com-
parisons, see [6].

4 Discussion

We have considered the reflection and transmis-
sion of long waves by an obstacle B in a rigid
cylindrical waveguide. For a rigid obstacle, this
led us to study the blockage coefficient L. This
far-field quantity appears in other related appli-
cations of matched asymptotic approximations.
Further applications are noted in [6].

The situation for sound-soft obstacles is more
complicated: one is required to calculate two ad-
ditional coefficients, denoted by P and Q in [5];
P is related to the electrostatic capacity of B in
the pipe.
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