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dGFEM-BEM mortar coupling for the Helmholtz problem in three dimensions
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Abstract

We present a way of coupling an interior penalty
discontinuous Galerkin method with a boundary
element method for the Helmholtz equation in
3d. The coupling is realized with a mortar vari-
able related to an impedance trace. We prove
quasi-optimality of the h- and p-versions of the
scheme, under a threshold condition on the ap-
proximation properties of the discrete spaces.
Keywords: discontinuous Galerkin method;
boundary element method; mortar cou-
pling; Helmholtz equation;

1 Model Problem

Consider a bounded domain Ω ⊆ R3 with an-
alytic boundary Γ. Fix a characteristic wave
speed k > 0 and let n : R3 → R be a smooth
function with n(x) > 0 and n(x) = 1 outside of
Ω. Assume that the right-hand side f is analytic
and satisfies supp(f) ⊆ Ω.

We aim to approximate solutions to the Helmholtz
problem

−∆u− (kn)2u = f in R3 (1a)
lim

|x|→+∞
|x|(∂|x|u− iku) = 0. (1b)

Most of the details to this talk can be found
in the preprint [1].

2 Mortar coupling

We introduce two auxiliary variables on the bound-
ary m := ∂−

n u + ikγ−u and uext := γ+u where
γ− and ∂−

n is the interior trace and normal deriva-
tive. γ+ correspondingly is the exterior trace.
This gives the coupled problem:





−∆u− (kn)2u = f in Ω,

∂nΓu+ iku = m on Γ,

uext = PItDm

γ−u =
(
1
2 +Kk

)
uext − Vk(m− ikuext).

(2)

For discretization, we use an interior penalty
dG discretization [3] for the equation posed on
Ω based on a piecewise polynomial space Vh.
For the boundary integrals, we use a combined-
field type representation for the Impedance-to-
Dirichlet operator and BEM spaces Wh ⊆ H−1/2(Γ)
and Zh ⊆ H1/2(Γ) for the approximation of m
and uext, respectively.

3 Analysis

We use two different norms:

∥(v, λ, vext)∥2dG := ∥∇hv∥20,Ω + ∥k v∥20,Ω
+ k−1∥β1/2J∇hvK∥20,FI

h
+ k∥α1/2JvK∥2

0,FI
h

+ k−1∥δ1/2∇hv · nΓ∥20,Γ + k∥v∥20,Γ
+ ∥λ∥2− 1

2
,Γ
+ ∥vext∥21

2
,Γ

and

∥(v, λ, vext)∥2dG+ := ∥(v,m, uext)∥2dG

+ k−1∥α−1/2{{∇hv}}∥20,FI
h
+ ∥h1/2p−1 λ∥20,Γ

where ∥ · ∥2
0,FI

h
denotes the sum of the L2-norms

over all interior facets, J·K and {{·}} denote the
jump and mean across facets respectively. α, β
and δ are stabilization parameters that need to
be chosen appropriately.

We denote the sesquilinear form obtained by
Galerkin discretization of (2) by T (·, ·). This
form satisfies a Gårding inequality in the dG-
norm, i.e., there exists ε > 0, c > 0 such that

(Re+ε Im)(T ((v, λ, vext), (v, λ, vext)))

≥ c∥(v, λ, vext)∥2dG −Θ(v, λ, vext),

with Θ(v, λ, vext) a compact perturbation. Sta-
bility holds in the stronger dG+-norm. By care-
fully designing the discretization scheme, we can
ensure adjoint consistency, i.e., the transpose of
the discretization matrix is the dG-discretization
of a natural adjoint problem to (2). This enables
the use of the powerful Schatz argument.
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4 Reconstruction operator

The main obstacle when trying to prove Gård-
ing inequality and stability of the bilinear form
is that while the dG approximation uh in the
interior has jumps across the faces, the bound-
ary integral operators require functions which
are H1/2(Γ)-conforming. Our solution: a novel
reconstruction operator P in the spirit of [2],
which maps piecewise H1 functions to globally
continuous functions.

Theorem 1 Let T be a shape-regular mesh of
size h on Ω. Then, for each p ∈ N there exists
a linear operator P : H1

pw(Ωh) → H1(Ω) that
satisfies, for all v ∈ H1

pw(Ωh),

∥∇Pv∥0,Ω ≲ ∥∇hv∥0,Ω + ∥h−1/2pJvK∥0,FI
h
,

∥Pv∥0,Ω ≲ ∥hp−2∇hv∥0,Ω
+ ∥v∥0,Ω + ∥h1/2p−1JvK∥0,FI

h
,

as well as the approximation property

∥h−1/2p (I − P)v∥0,Γ
≲ ∥∇hv∥0,Ω + ∥h−1/2pJvK∥0,FI

h
.

The construction of Theorem 1 is such that we
first use a quasi-interpolation into piecewise lin-
ear functions on an artificial mesh of size O(hp−2).
There, we use the “averaging of degrees of free-
dom” operator from [2]. This gives robust sta-
bility and approximation estimates for piece-
wise polynomials of degree p. The price is
that the operator does not map into the space
Zh of piecewise polynomials on the original tri-
angulation. Instead, it maps to the space of
piecewise linears on an artificial refined grid.

5 Main Theorem

Using all these ingredients, we can derive a quasi-
optimality result.

Theorem 2 Let the solution (u,m, uext) to (2)
be in H

3
2
+t(Ω)×L2(Γ)×H

1
2 (Γ) for some t > 0,

and let (uh,mh, u
ext
h ) ∈ Vh×Wh×Zh be the dis-

crete solution. Assume that the adjoint problem
can be approximated sufficiently well. Then:
∣∣∣∣∣∣u− uh,m−mh, u

ext − uexth

∣∣∣∣∣∣
dG

≲ inf
vh,λh,vexth

∣∣∣∣∣∣u− vh,m− λh, u
ext − vext

h

∣∣∣∣∣∣
dG+ ,

where the infimum is taken over all (vh, λh, v
ext
h ) ∈

Vh ×Wh × Zh.

The analysis of [1] is not explicit in k. We will
briefly discuss how to address this issue.

6 Numerical results

We performed numerical simulations in which
we compared the numerical approximations of
our scheme to a known exact smooth solution.
Namely, we used the domain Ω := (−1, 1)3, the
coefficient n = 1 and set

u(x, y, z) :=




sin(k x) cos(ky) (x, y, z) ∈ Ω

eik
√

x2+y2+z2√
x2+y2+z2

otherwise.

Note that this solution is discontinuous across
Γ, and thus does not strictly fit (1). One can
easily modify the right-hand sides of the scheme
to account for given jumps across Γ.

We observe in Figure 1 that the method per-
forms as expected when refining the mesh, i.e.
the error is O(hp) where p denotes the order of
the polynomials employed.
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Figure 1: Convergence of the h-version for k =
2
√
3π.
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