dGFEM-BEM mortar coupling for the Helmholtz problem in three dimensions

Ch. Erath ${ }^{1}$, L. Mascotto ${ }^{2}$, J. M. Melenk ${ }^{3}$, I. Perugia ${ }^{4}$, A. Rieder ${ }^{5, *}$
${ }^{1}$ University College of Teacher Education Vorarlberg, 6800 Feldkirch, Austria
${ }^{2}$ Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, 20125 Milano, Italy
${ }^{3}$ Institut für Analysis und Scientific Computing, TU Wien, 1040 Vienna, Austria
${ }^{4}$ Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria
${ }^{5}$ Institut für Analysis und Scientific Computing, TU Wien, 1040 Vienna, Austria
*Email: alexander.rieder@tuwien.ac.at

Abstract

We present a way of coupling an interior penalty discontinuous Galerkin method with a boundary element method for the Helmholtz equation in 3d. The coupling is realized with a mortar variable related to an impedance trace. We prove quasi-optimality of the h - and p-versions of the scheme, under a threshold condition on the approximation properties of the discrete spaces.

Keywords: discontinuous Galerkin method; boundary element method; mortar coupling; Helmholtz equation;

1 Model Problem

Consider a bounded domain $\Omega \subseteq \mathbb{R}^{3}$ with analytic boundary Γ. Fix a characteristic wave speed $k>0$ and let $n: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function with $n(x)>0$ and $n(x)=1$ outside of Ω. Assume that the right-hand side f is analytic and satisfies $\operatorname{supp}(f) \subseteq \Omega$.

We aim to approximate solutions to the Helmholtz problem

$$
\begin{array}{r}
-\Delta u-(k n)^{2} u=f \text { in } \mathbb{R}^{3} \\
\lim _{|x| \rightarrow+\infty}|x|\left(\partial_{|x|} u-i k u\right)=0 . \tag{1b}
\end{array}
$$

Most of the details to this talk can be found in the preprint [1].

2 Mortar coupling

We introduce two auxiliary variables on the boundary $m:=\partial_{n}^{-} u+i k \gamma^{-} u$ and $u^{e x t}:=\gamma^{+} u$ where γ^{-}and ∂_{n}^{-}is the interior trace and normal derivative. γ^{+}correspondingly is the exterior trace. This gives the coupled problem:

$$
\begin{cases}-\Delta u-(k n)^{2} u=f & \text { in } \Omega, \\ \partial_{\mathbf{n}_{\Gamma}} u+i k u=m & \text { on } \Gamma \\ u^{e x t}=\mathcal{P}_{I t D} m & \\ \gamma^{-} u=\left(\frac{1}{2}+\mathcal{K}_{k}\right) u^{e x t}-\mathcal{V}_{k}\left(m-i k u^{e x t}\right)\end{cases}
$$

For discretization, we use an interior penalty dG discretization [3] for the equation posed on Ω based on a piecewise polynomial space V_{h}. For the boundary integrals, we use a combinedfield type representation for the Impedance-toDirichlet operator and BEM spaces $W_{h} \subseteq H^{-1 / 2}(\Gamma)$ and $Z_{h} \subseteq H^{1 / 2}(\Gamma)$ for the approximation of m and $u^{e x t}$, respectively.

3 Analysis

We use two different norms:

$$
\begin{aligned}
& \left\|\left(v, \lambda, v^{e x t}\right)\right\|_{\mathrm{dG}}^{2}:=\left\|\nabla_{h} v\right\|_{0, \Omega}^{2}+\|k v\|_{0, \Omega}^{2} \\
& +k^{-1}\left\|\beta^{1 / 2} \llbracket \nabla_{h} v \rrbracket\right\|_{0, \mathcal{F}_{h}^{I}}^{2}+k\left\|\alpha^{1 / 2} \llbracket v \rrbracket\right\|_{0, \mathcal{F}_{h}^{I}}^{2} \\
& +k^{-1}\left\|\delta^{1 / 2} \nabla_{h} v \cdot \mathbf{n}_{\Gamma}\right\|_{0, \Gamma}^{2}+k\|v\|_{0, \Gamma}^{2} \\
& \quad+\|\lambda\|_{-\frac{1}{2}, \Gamma}^{2}+\left\|v^{e x t}\right\|_{\frac{1}{2}, \Gamma}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\left(v, \lambda, v^{e x t}\right)\right\|_{\mathrm{dG}^{+}}^{2}:=\left\|\left(v, m, u^{e x t}\right)\right\|_{\mathrm{dG}}^{2} \\
& \left.+k^{-1} \| \alpha^{-1 / 2}\left\{\nabla_{h} v\right\}\right\}\left\|_{0, \mathcal{F}_{h}^{I}}^{2}+\right\| h^{1 / 2} p^{-1} \lambda \|_{0, \Gamma}^{2}
\end{aligned}
$$

where $\|\cdot\|_{0, \mathcal{F}_{h}^{I}}^{2}$ denotes the sum of the L^{2}-norms over all interior facets, $\llbracket \cdot \rrbracket$ and $\{\cdot\}$ denote the jump and mean across facets respectively. α, β and δ are stabilization parameters that need to be chosen appropriately.

We denote the sesquilinear form obtained by Galerkin discretization of (2) by $\mathcal{T}(\cdot, \cdot)$. This form satisfies a Gårding inequality in the dGnorm, i.e., there exists $\varepsilon>0, c>0$ such that

$$
\begin{aligned}
& (\operatorname{Re}+\varepsilon \operatorname{Im})\left(\mathcal{T}\left(\left(v, \lambda, v^{e x t}\right),\left(v, \lambda, v^{e x t}\right)\right)\right) \\
& \quad \geq c\left\|\left(v, \lambda, v^{e x t}\right)\right\|_{\mathrm{dG}}^{2}-\Theta\left(v, \lambda, v^{e x t}\right),
\end{aligned}
$$

with $\Theta\left(v, \lambda, v^{e x t}\right)$ a compact perturbation. Stability holds in the stronger dG^{+}-norm. By carefully designing the discretization scheme, we can ensure adjoint consistency, i.e., the transpose of the discretization matrix is the dG-discretization of a natural adjoint problem to (2). This enables the use of the powerful Schatz argument.

4 Reconstruction operator

The main obstacle when trying to prove Gårding inequality and stability of the bilinear form is that while the dG approximation u_{h} in the interior has jumps across the faces, the boundary integral operators require functions which are $H^{1 / 2}(\Gamma)$-conforming. Our solution: a novel reconstruction operator \mathcal{P} in the spirit of [2], which maps piecewise H^{1} functions to globally continuous functions.

Theorem 1 Let \mathcal{T} be a shape-regular mesh of size h on Ω. Then, for each $p \in \mathbb{N}$ there exists a linear operator $\mathcal{P}: H_{\mathrm{pw}}^{1}\left(\Omega_{h}\right) \rightarrow H^{1}(\Omega)$ that satisfies, for all $v \in H_{\mathrm{pw}}^{1}\left(\Omega_{h}\right)$,

$$
\begin{aligned}
\|\nabla \mathcal{P} v\|_{0, \Omega} & \lesssim\left\|\nabla_{h} v\right\|_{0, \Omega}+\left\|h^{-1 / 2} p \llbracket v \rrbracket\right\|_{0, \mathcal{F}_{h}^{I}} \\
\|\mathcal{P} v\|_{0, \Omega} & \lesssim\left\|h p^{-2} \nabla_{h} v\right\|_{0, \Omega} \\
& +\|v\|_{0, \Omega}+\left\|h^{1 / 2} p^{-1} \llbracket v \rrbracket\right\|_{0, \mathcal{F}_{h}^{I}}
\end{aligned}
$$

as well as the approximation property

$$
\begin{aligned}
\| h^{-1 / 2} p(I- & \mathcal{P}) v \|_{0, \Gamma} \\
& \lesssim\left\|\nabla_{h} v\right\|_{0, \Omega}+\left\|h^{-1 / 2} p \llbracket v \rrbracket\right\|_{0, \mathcal{F}_{h}^{I}}
\end{aligned}
$$

The construction of Theorem 1 is such that we first use a quasi-interpolation into piecewise linear functions on an artificial mesh of size $\mathcal{O}\left(h p^{-2}\right)$. There, we use the "averaging of degrees of freedom" operator from [2]. This gives robust stability and approximation estimates for piecewise polynomials of degree p. The price is that the operator does not map into the space Z_{h} of piecewise polynomials on the original triangulation. Instead, it maps to the space of piecewise linears on an artificial refined grid.

5 Main Theorem

Using all these ingredients, we can derive a quasioptimality result.

Theorem 2 Let the solution ($u, m, u^{e x t}$) to (2) be in $H^{\frac{3}{2}+t}(\Omega) \times L^{2}(\Gamma) \times H^{\frac{1}{2}}(\Gamma)$ for some $t>0$, and let $\left(u_{h}, m_{h}, u_{h}^{e x t}\right) \in V_{h} \times W_{h} \times Z_{h}$ be the discrete solution. Assume that the adjoint problem can be approximated sufficiently well. Then:

$$
\begin{aligned}
& \left\|u-u_{h}, m-m_{h}, u^{e x t}-u_{h}^{e x t}\right\|_{d G} \\
& \lesssim_{v_{h}, \lambda_{h}, v_{h}^{e x t}}\left\|u-v_{h}, m-\lambda_{h}, u^{e x t}-v_{h}^{e x t}\right\|_{d G^{+}},
\end{aligned}
$$

where the infimum is taken over all $\left(v_{h}, \lambda_{h}, v_{h}^{e x t}\right) \in$ $V_{h} \times W_{h} \times Z_{h}$.

The analysis of [1] is not explicit in k. We will briefly discuss how to address this issue.

6 Numerical results

We performed numerical simulations in which we compared the numerical approximations of our scheme to a known exact smooth solution. Namely, we used the domain $\Omega:=(-1,1)^{3}$, the coefficient $n=1$ and set

$$
u(x, y, z):= \begin{cases}\sin (k x) \cos (k y) & (x, y, z) \in \Omega \\ \frac{e^{i k \sqrt{x^{2}+y^{2}+z^{2}}}}{\sqrt{x^{2}+y^{2}+z^{2}}} & \text { otherwise }\end{cases}
$$

Note that this solution is discontinuous across Γ, and thus does not strictly fit (1). One can easily modify the right-hand sides of the scheme to account for given jumps across Γ.

We observe in Figure 1 that the method performs as expected when refining the mesh, i.e. the error is $\mathcal{O}\left(h^{p}\right)$ where p denotes the order of the polynomials employed.

Figure 1: Convergence of the h-version for $k=$ $2 \sqrt{3} \pi$.

References

[1] Ch. Erath, L. Mascotto, J. M. Melenk, I. Perugia, and A. Rieder. Mortar coupling of $h p$-discontinuous galerkin and boundary element methods for the helmholtz equation. arXiv:2105.06173, 2021.
[2] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal., 41(6):2374-2399, 2003.
[3] J. M. Melenk, A. Parsania, and S. Sauter. General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput., 57(3):536-581, 2013.

