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Abstract

A method to solve a non-linear eigenvalue prob-
lem coming from boundary integral equations
is studied. The equations are provided by pho-
tonic crystal fiber applications.
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1 Introduction

Photonic crystal fibers (PFC) are systems that
have been widely used for decades to allow light
propagation. The geometry, the dielectric char-
acteristics of the materials and the wavelength
of the source are the main parameters to deter-
mine the effective refractive index of the medium.
The complexity of these optical systems — het-
erogeneous structure, geometry of the section
and the micrometric order of magnitude — makes
the numerical methods mandatory to quickly
design a PCF for the desired application. The
finite-difference time-domain method and the fi-
nite element method are common approaches
used to solve the problem of propagation in a
PCF. However, these methods may require a
huge amount of memory and computation time,
according to the size of the mesh for a PCF
with several inclusions. Solutions based on the
Boundary Element Method (BEM) [1] have been
proposed to reduce the size of the problem. They
allow to consider only the mesh on the boundary
of the inclusions but are limited by the resolu-
tion of a nonlinear eigenvalue problem. Usually
solved by Miiller’s method, it requires a rather
precise knowledge of the solution as a starting
point. We propose as an alternative a search
method based on contour integrals and rational
interpolation |2| not limited by these difficulties.

2 Boundary Integral Equations

We apply the formulation proposed in [1| but
other formulations could be considered. Using
the free space Green function
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where Hél) is the Hankel function. Magnetic
field components v = H, or H, can be repre-
sented for r ¢ 0€; by

_ Ou(T)
G(r,t
o9 ( )8’/

. (2)
— LG(I.’ r) u(r)ds(r
L, ey H0s)

u(r) = ds(T)

where (2, is an homogeneous inclusion. Express-
ing continuity conditions on an interface 0f};

[0 H] = [E:] =0
and using Maxwell’s equations
ikon*E, = 0yH, — 0, Hy,

the system can be expressed under the form
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It leads to solve a non-linear eigenvalue problem
F(neff)N'H =0. (3)

Matrix F', coming from continuous operator M,
depends on the effective refractive index neg.

3 Algorithm for solving problem (3)

For solving a non-linear eigenvalue problem as
(3), approaches exploiting contour integrals have
been introduced in |2] and some improved vari-
ants have been proposed in several references
(see for instance [3]). It consists to numerically
compute integrals
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where C is a smooth contour enclosing the eigen-
values of interest, f an analytic function and V'
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a random matrix of L columns. Keldysh’ theo-
rem provides us a link with the eigenvalues and
right /left eigenvectors; for instance in the case
of simple eigenvalues, we can write
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where n(C) is the number of eigenvalues inside
C, A\ are these eigenvalues, v and wyg, the corre-
sponding right and left eigenvectors and R is an
analytic function. Computing contour integrals
then enables us to focus only on the contribu-
tion of the rational part containing information
on the eigenvalues. In most of the proposed al-
gorithms, f is chosen as the moments z*, with
k=1,..., K and it enables to convert the non-
linear eigenvalue problem into a linear general-
ized eigenvalue problem.

Connections have also been done between
this approach and rational interpolation; it leads
in [3] to an algorithm called SS-RI (Sakurai-
Sugiura method with Rational Interpolation).
The proposed modifications enable to provide
more numerical stability, in particular for large
K, and also to choose "quadrature" points not
only on the contour C but also inside. This ap-
proach is considered for the numerical results.

4 Numerical Results

The tests in this section correspond to several
discretisations of the fiber shown Figure 1 with
the following physical parameters : free space
wavelength is A = 1.45um, each hole has a di-
ameter of bum and is discretized by N = 40 un-
knowns. The refractive index of the glass matrix
is 1.45 and the medium surrounding the hole is
infinite. We have tested several integral con-

Figure 1: PCF hexapole for numerical tests

tour proposed in [3] but the most convenient is
to keep a segment [a,,b,] on the real axis dis-
cretized with N, Chebyshev points. It is then

interesting to note that without any computa-
tion outside the real axis, the method gives a
good approximate value of the imaginary part.
Table 1 gives zero(s) obtained for several dis-
cretizations and lengths of the segment. As ex-

[ax,bx] N, Neff

[1.4453,1.4454] | 3

(1.4453952345,3.21264¢-08)

[1.4453,1.4454] | 5

(1.4453952341,3.19389¢-08)

[1.4453,1.4454] | 10

(1.4453952341,3.19388¢-08)

[ax,bx| N, Neff

[1.445,1.446] 5

(1.4453952335,2.859892¢-08)

[1.4451.446] | 10

(1.4453952341,3.19371e-08)

[1.4451.446] | 20

(1.4453952341,3.19393¢-08)

[ax,bx] N, Neff

[1.44,1.45] 20 (1.4453952506,4.34332¢-08)
[1.44,1.45] 50 (1.4453952304,3.997883e-08)
[1.44,1.45] 100 | (1.4453952343,3.1748179¢-08)

Table 1: SS-RI algorithm Results

pected, more Chebyshev points are necessary
when the size of the segment increases. The
main result is that a good approximation can
be obtained with few computations. To start
the search, a rough interval scan have to be per-
formed and a few Miiller iterations are useful
to refine the solution. We point out that the
algorithm may give several close solutions (two
in our example) and that the refinement shows
that they are equal. The SS-RI algorithm re-
quires less computations than the brute force
Miiller algorithm [1] and does not require a very
close initial guess. It makes the method more
relevant to compute new PCF.
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