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Localization landscape for interacting Bose gases in one-dimensional speckle potentials
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Abstract

Using the localization-landscape theory [1], we in-
vestigate the properties and the shape of the ground

state (GS) of a gas of ultracold bosons in one-dimensional
(1D) speckle potentials, starting from the Gross-Pitaevskii

equation (GPE). For attractive interactions, we find
approximate relations holding between the localiza-
tion length and the disorder parameter as well as
between the former quantity and the nonlinear coef-
ficient. For weakly repulsive interactions, we prove
that the ground state ¢y of the GPE can be under-
stood as a superposition of a finite number of single-
particle (SP) states. We show numerically that, for
intermediate repulsive interactions, 1y follows the
modulations of the effective potential. We further
prove that, for given parameters of the SP Hamilto-
nian, there exists a value of the nonlinear coefficient
at which g is well predicted by the normalized lo-
calization landscape.
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1 Introduction

We consider ultracold dilute Bose gases in a geom-
etry with a 1D random potential along the z axis
and a two-dimensional harmonic potential with fre-
quency w, in the (y,z) plane. The level spacing
between two neighboring eigenstates of the SP 1D
problem along z is assumed to be smaller than zero-
point energy E; := hw, of the harmonic oscilla-
tor (HO), so the GS can be factorized into the one
of the two-dimensional (2D) HO and that of a one-
dimensional GPE. After integrating out the transverse-

plane wave-functions, the GPE along the x axis reads [2]:
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where Vi denotes the random potential, HP the SP
Hamiltonian, g labels the nonlinear coupling and a,
represents the s-wave scattering length. The ran-
dom potential treated here is a correlated speckle
potential, whose probability distribution in the space
obeys the Rayleigh law,

PV = P,

where ©p () is Heaviside’s step function and Vj the
disorder parameter. The spatial correlation profile
C(z) of the potential is chosen to be Gaussian:

C(z) == [Vr(0) — Vol [Vr(x) — Vo] =
= Ve, (3)

in which ¢ denotes the correlation length, whereas ~
indicates the average over the configurations of the
disordered potential.

2 The localization landscape

From the one-dimensional problem found in Eq. (1),
a localization landscape (LL) function u(x) can be
defined in analogy to the one introduced in Ref. [1],

HP(z)u(z) =1, (4)

satisfying the boundary conditions u(z)|,_, =0,
where L is the length of the 1D domain. Simifarly to
the procedure carried out in Ref. [1], the solution
1 can be expressed as a product of the landscape
function u and the auxiliary function ¢. Equation
(1) can be thus recast as:
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which is a GP-like equation with a different elliptic
differential operator and a space-dependent coeffi-
cient of the nonlinear interaction term. The effective
random potential is now given by W(x) := u(x)!,
as proven in the SP case [3].

3 Attractive interactions

We numerically computed ground state 1y of the
GPE using the split-step Crank-Nicolson method [4],
which is based on imaginary-time evolution. In the
case of attractive interactions, the wavefunction is
localized and its asymptotical behaviour can be well
approximated as:

(z—=q)

5 e T < xg
o(z) =~ 1/ ———<'1 T =20 , 6
Yo(z) Voo . 0 (6)
e R T > g

where A\;, and Ag represent the left and the right lo-
calization lengths respectively. The latter quantities
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appear to shrink as |g(N — 1)| is increased. By com-
puting the localization lengths for variable nonlinear
coefficients and performing nonlinear regressions, we
find that the following relations hold:
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where )\, := An/lL with 1) = ,/m—zL and n =L, R,
whereas § = g/(E 11, ). By proceeding with an anal-
ogous method, we numerically assessed the valid-
ity of the following relation with the disorder mean
value:
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where Vy := V, /E |, which is also consistent with

the known result in the absence of interactions [5].

4 Repulsive interactions

For weak repulsive interactions (u ~ Ey), we prove
that 1o () can be expressed as a superposition of the
N, lowest-lying SP eigenstates of HP:

Ngs—1
P (z) = Y e UiP(a), (9)
j=0

where the coefficients {c; } must satisfy Z;V:al |ej|? =

1. N, can be reckoned as N, ~ nSP(E(()O)), which
is the number of SP states whose energy lies below

E~(()0)’ i.e. the integrated density of states (IDoS) n®P

(0

evaluated at Ej ). The latter quantity is defined as:

L2
N -1 .
B = pp+ LD [ repar. o
—L/2

In the presence of repulsive interactions, in contrast
with the attractive case, the wavefunction ¢ (x) gets
increasingly delocalized (with decreasing oscillation
amplitude) as the nonlinearity coefficient is raised.
For intermediate repulsive interactions, when the heal-

ing length § := /5 — satlsﬁes §Zoand £ K L, we

introduce the followmg approximation scheme based
on the the effective potential W (x):
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where ctr 1 denotes the normalization constant. In
Panels (c)-(f) of Fig. 1, ng’H(x) is compared against

the perturbative approximation, ¢ proposed in Ref. [6].

We further prove that, for given parameters of HP,
there exists a value of g(IN — 1) at which g is well
predicted by the normalized localization landscape:

1l u()
Vi (z) = m (12)

For strong repulsive interactions ({ < o), the ki-
netic energy term in the GPE can be neglected and
the wavefunction follows the modulations of the orig-
inal potential V(z), thus is well described by the
Thomas-Fermi approximation [6].
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Figure 1: Approximations of |zﬁo| = |1/10|l1l/2 plotted
as functions of & := z/l; for different values of the
nonlinear coefficient.

For strong disorder and intermediate interactions
the Lifshitz glass phase [7] is achieved, where Bose
gas splits into condensates lying in different wells of
the effective potential. We numerically show that, in
those conditions, a finite number of nonoverlapping
SP eigenstates, belonging to the Lifshitz tails of the
IDoS, are occupied.
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