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Abstract

A new approach, based on the Correction Func-
tion Method (CFM), to handle boundary con-
ditions for Hermite-Taylor methods is proposed.
In Hermite methods not only the solution but
also its derivatives need to be determined on the
boundary. Here we provide additional informa-
tion to determine all degrees of freedom on the
boundary by a pre-computation where a mini-
mization problem is solved. The functional to
be minimized is a square measure of the resid-
ual associated with the original problem, that
is Maxwell’s equations in this work. Numerical
examples are performed in 1-D and the expected
convergence order is obtained.
Keywords: Hermite methods, Correction func-
tion method, Maxwell’s equations, High order,
Boundary conditions

1 Introduction

Hermite methods achieve arbitrary order of ac-
curacy while maintaining a stability condition
only depending on the largest wave-speed, inde-
pendent of the order of the method [1]. How-
ever, the imposition of general boundary con-
ditions is cumbersome (and largely unexplored)
since a (2m+1)-order Hermite method requires
the knowledge of all electromagnetic fields and
their m first derivatives on the boundary. A
possible solution to this is to use a hybrid DG-
Hermite method as in [2] but this does require
the use of local timestepping to maintain the
large timesteps in the Hermite method. Here,
we propose an alternative solution based on the
CFM [3,4] to handle boundary conditions.
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Figure 1: Local CFM patch for the boundary
node xN . The dashed box is Ωh × IhΓ .

Let us assume a domain Ω = [xℓ, xr] and a
time interval I = [t0, tf ], we focus on the follow-
ing form of Maxwell’s equations in 1-D:

µ∂tH + ∂xE = 0 in Ω× I,

ϵ ∂tE + ∂xH = 0 in Ω× I,

H(x, t0) = a(x), ∀x ∈ Ω,

E(x, t0) = b(x), ∀x ∈ Ω,

c1 E(xℓ, t) + c2 H(xℓ, t) = gℓ(t), ∀t > t0,

c3 E(xr, t) + c4 H(xr, t) = gr(t), ∀t > t0,

(1)

where H is the magnetic field, E is the elec-
tric field, µ is the magnetic permeability, ϵ is
the electric permittivity, ci for i = 1, . . . , 4 are
known coefficients, and a(x), b(x), gℓ(t) and gr(t)
are known functions.

2 Hermite-Taylor Methods

Hermite methods use a staggered grid in space
and time defined by a primal grid xi = xℓ +
i∆x, i = 0, . . . , N , and a dual grid xi+1/2 =
xℓ + (i+ 1/2)∆x, i = 0, . . . , N − 1. Here ∆x =
xr−xℓ

N and N is the number of cells on the primal
grid. The approximate solution on the primal
grid is centered at times tn = t0 + n∆t while
the approximation on the dual grid is centered
at times tn+1/2 = t0 + (n+ 1/2)∆t.

Assuming that the m first derivatives at the
initial time are available, we construct Hermite
interpolants of degree 2m + 1. Afterward, we
evolve the interpolant at the cell center through
time using a recursive relation between time and
space derivatives that comes from the system
of PDEs. For linear hyperbolic problems, this
evolution is exact. In other words, knowing all
space derivatives of a given polynomial approx-
imation at a given point (xi, tn+1/2) allows us
to obtain the exact Taylor expansion in time for
this polynomial and its derivatives, defining the
update at (xi, tn+1).

3 Imposition of Boundary Conditions

Consider the problem of finding polynomials of
degree m at (xN , tn+1) in Figure 1 that can be
used together with the Hermite data at xN−1 to
interpolate to (xN−1/2, tn+1) and subsequently
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J(H,E) =
1

2

∫

Ih

[
ℓh

∫

Ωh

(µ∂tH + ∂xE)2 + (ϵ∂tE + ∂xH)2 dx+ (c3E(xr, t) + c4H(xr, t)− gr(t))
2

+(H(xN−1/2, t)−H∗(xN−1/2, t))
2 + (E(xN−1/2, t)− E∗(xN−1/2, t))

2
]
dt

(2)

evolve the interpolant in time. Let H∗ and E∗

be the approximations to the magnetic and elec-
tric fields by the Hermite method on the dual
grid and centered in time at tn+1/2. We then
seek space time polynomials E and H such that
the functional (2) is minimized. Precisely we
solve the following problem at the boundary

Find (H,E) ∈ V × V such that

(H,E) ∈ argmin
v,w∈V

J(v, w),
(3)

where V = P k(Ωh × Ih) is the space of polyno-
mials of degree k. Note that the functional is
consistent with Maxwell’s equations (1).

We choose the degree k ≥ 2m to preserve
the order of the Hermite-Taylor method and note
that once the solution to the minimization prob-
lem is found the approximations H and E are
known in the local patch, as shown in Fig. 1.
Finally note that for linear problems in station-
ary geometry, as we consider here, the solution
to the minimization problem simply entails a
small linear solve whose factorization can be
computed and stored prior to timestepping.
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Figure 2: Convergence plots for various values of
m. The red curves correspond to the expected
order and U = [H,E]T .

4 Numerical Examples

Consider a domain Ω = [13 ,
8
3 ], a time interval

I = [0, 193 ], µ = 1 and ϵ = 1. We set ∆t = 0.5h,
c1 = c3 = 0.5, c2 = c4 = 1, and set the ini-
tial and boundary data so find that the solution
to the problem is H(x, t) = sin(250x) sin(250t),
E = cos(250x) cos(250t). Figure 2 shows how
the errors follow the expected 2m + 1 rates of
convergence.

As a final numerical example, we solve the
2-D Maxwell’s equations in a 2 × 2 PEC cav-
ity with the Hermite-CFM of order of accuracy
3. As can be seeing in Figure 3, the errors are
smooth and evenly distributed over the compu-
tational domain, indicating that the boundary
treatment is stable and accurate.

Figure 3: Solution (left) and error (right) for a
cavity problem in 2D.
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