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Abstract

A new approach, based on the Correction Func-
tion Method (CFM), to handle boundary con-
ditions for Hermite-Taylor methods is proposed.
In Hermite methods not only the solution but
also its derivatives need to be determined on the
boundary. Here we provide additional informa-
tion to determine all degrees of freedom on the
boundary by a pre-computation where a mini-
mization problem is solved. The functional to
be minimized is a square measure of the resid-
ual associated with the original problem, that
is Maxwell’s equations in this work. Numerical
examples are performed in 1-D and the expected
convergence order is obtained.
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1 Introduction

Hermite methods achieve arbitrary order of ac-
curacy while maintaining a stability condition
only depending on the largest wave-speed, inde-
pendent of the order of the method [1]. How-
ever, the imposition of general boundary con-
ditions is cumbersome (and largely unexplored)
since a (2m+ 1)-order Hermite method requires
the knowledge of all electromagnetic fields and
their m first derivatives on the boundary. A
possible solution to this is to use a hybrid DG-
Hermite method as in [2] but this does require
the use of local timestepping to maintain the
large timesteps in the Hermite method. Here,
we propose an alternative solution based on the
CFM [3,4] to handle boundary conditions.
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Figure 1: Local CFM patch for the boundary
node z . The dashed box is 2}, X I{l.

Let us assume a domain 2 = [z, z,] and a
time interval I = [to,ts], we focus on the follow-
ing form of Maxwell’s equations in 1-D:

woH+ 0, F=0 in QxI,
cOE+O,H=0 in QxI,
H(z,to) = a(x), Yz € Q,
E(z,t0) = b(z), Ve,
c1 E(xe,t) + co H(xp,t) = go(t), Vit > to,
cs E(x,,t) + cq H(xzp,t) = g, (t), Vt>to,

where H is the magnetic field, F is the elec-
tric field, p is the magnetic permeability, € is
the electric permittivity, ¢; for i = 1,...,4 are
known coefficients, and a(x), b(x), g¢(t) and g, (t)
are known functions.

2 Hermite-Taylor Methods

Hermite methods use a staggered grid in space
and time defined by a primal grid z; = zp +
iAz,i = 0,...,N, and a dual grid z;,1/p =
2o+ (i+1/2) Az, i=0,...,N —1. Here Az =
77t and N is the number of cells on the primal
grid. The approximate solution on the primal
grid is centered at times t, = tg + n At while
the approximation on the dual grid is centered
at times t,,1/9 = to + (n + 1/2) At.

Assuming that the m first derivatives at the
initial time are available, we construct Hermite
interpolants of degree 2m + 1. Afterward, we
evolve the interpolant at the cell center through
time using a recursive relation between time and
space derivatives that comes from the system
of PDEs. For linear hyperbolic problems, this
evolution is exact. In other words, knowing all
space derivatives of a given polynomial approx-
imation at a given point (z;,t,1/2) allows us
to obtain the exact Taylor expansion in time for
this polynomial and its derivatives, defining the
update at (x;, tp11).

3 Imposition of Boundary Conditions

Consider the problem of finding polynomials of
degree m at (zn,tn4+1) in Figure 1 that can be
used together with the Hermite data at xy_1 to
interpolate to (zy_1/2,tnt1) and subsequently
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J(H,B) = /I [0 /Q (WOH + 0uE)2 + (F + 0uH)2 dz + (s B, ) + ca H(z, £) — g1 (1))?
h h

(2)

+(H(zn_12:t) = H*(zn_1)2,1))* + (BE(zn_1/2:t) — E*(xN—l/Qat))Q] dt

evolve the interpolant in time. Let H* and E*
be the approximations to the magnetic and elec-
tric fields by the Hermite method on the dual
grid and centered in time at ¢,,1/5. We then
seek space time polynomials £ and H such that
the functional (2) is minimized. Precisely we
solve the following problem at the boundary

Find (H,E) € V x V such that

(H,E) € argminJ (v, w), (3)
v,weV

where V = P*(Qy, x I,) is the space of polyno-
mials of degree k. Note that the functional is
consistent with Maxwell’s equations (1).

We choose the degree £ > 2m to preserve
the order of the Hermite-Taylor method and note
that once the solution to the minimization prob-
lem is found the approximations H and E are
known in the local patch, as shown in Fig. 1.
Finally note that for linear problems in station-
ary geometry, as we consider here, the solution
to the minimization problem simply entails a
small linear solve whose factorization can be
computed and stored prior to timestepping.
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Figure 2: Convergence plots for various values of
m. The red curves correspond to the expected
order and U = [H, E].

4 Numerical Examples

Consider a domain Q = [, %], a time interval

I= [0,1—39], iw=1and e =1. Weset At =0.5h,
cg = c3 = 0.5, cg = ¢4 = 1, and set the ini-
tial and boundary data so find that the solution
to the problem is H(x,t) = sin(250x) sin(250t),
E = cos(250x) cos(250t). Figure 2 shows how
the errors follow the expected 2m + 1 rates of
convergence.

As a final numerical example, we solve the
2-D Maxwell’s equations in a 2 x 2 PEC cav-
ity with the Hermite-CFM of order of accuracy
3. As can be seeing in Figure 3, the errors are
smooth and evenly distributed over the compu-
tational domain, indicating that the boundary
treatment is stable and accurate.
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Figure 3: Solution (left) and error (right) for a
cavity problem in 2D.
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