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EM-WaveHoltz: A time-domain frequency-domain solver for Maxwell’s equations
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Abstract

The EM-WaveHoltz method for computing time-
harmonic solutions of Maxwell’s equations by
time-domain simulations is presented. Numeri-
cal examples illustrating the properties of EM-
WaveHoltz are given.
Keywords: Maxwell’s equations, frequency-domain,
time-domain, positive definite.

1 The WaveHoltz iteration for Maxwell

Maxwell’s frequency-domain equations closed by
boundary conditions corresponding to either a
perfect electric conductor or to an unbounded
domain take the form

iωϵE = ∇×H− J, (1a)
iωµH = −∇×E. (1b)

Here E and H are the complex valued electric
and magnetic fields, ϵ, µ are real valued permit-
tivity and permeability and J is the real valued
current source.

Let T = 2π/ω-periodic fields Ẽ = Ê0 cos(ωt)+
Ê1 sin(ωt), H̃ = Ĥ0 cos(ωt)+ Ĥ1 sin(ωt), be so-
lutions of the time-domain equations

ϵ∂tẼ = ∇× H̃− sin(ωt)J, (2a)

µ∂tH̃ = −∇× Ẽ. (2b)

Then ℑ{E} = Ê0, ℑ{H} = Ĥ0, ℜ{E} = Ê1 =
1
ϵ∇× Ĥ0, and ℜ{H} = Ĥ1 = − 1

µ∇× Ê0.
Building on the ideas introduced in [1] our

EM-WaveHoltz method finds the periodic solu-
tions by iteratively determining the initial data
to (2). Let ν = (νE ,νH)T be initial conditions
to (2). Then the filter operator, Π, is defined

Πν = Π

(
νE

νH

)
=

2

T

∫ T

0

(
cos(ωt)− 1

4

)(
Ẽν

H̃ν

)
dt.

Here T = 2π/ω and Ẽν and H̃ν are the solution
to (2) with initial conditions ν = (νE ,νH)T .
The operator Π is contractive and can be used
to define the EM-WaveHoltz iteration

νn+1 = Πνn, with ν0 = (ν0
E ,ν

0
H)T = 0. (3)

The EM-WaveHoltz iteration converges to the
imaginary parts of the solution to the frequency-
domain equation

lim
n→∞

νn = lim
n→∞

(νn
E ,ν

n
H)T = (ℑ{E},ℑ{H})T ,

and the real parts can be recovered via the ex-
pressions above.

It is easy to rewrite the fixed point problem
as a positive definite linear system that can be
efficiently solved by a Krylov subspace method.
To see this define Sν ≡ Πν − Π0. We can
then write Πν = Sν + Π0, thus finding the
fix point of Π: Πν = ν is equivalent to solv-
ing the equation (I − S)ν = Π0. To obtain
the right hand side Π0, we first solve, (using
your favourite Maxwell solver) the time-domain
problem (2) with zero initial conditions ν = 0
from t = 0 to t = T = 2π/ω once. The filter
is computed using the trapezoidal rule. Simi-
larly the cost to compute one Krylov vector is
that of a wave solve with initial data. In our
method we can choose to make the Krylov sub-
space smaller by noting that although we are
looking for a T = 2π

ω -periodic solution, there
is nothing in the method that prevents us from
changing the filtering to extend over a longer
time, say, T = Nperiods

2π
ω . As we show in the nu-

merical examples below, for moderate Nperiods
this reduces the number of iterations by a factor
of roughly Nperiods so that the overall computa-
tional cost is almost the same, but the memory
consumption is Nperiods times smaller.

2 Numerical Examples

2.1 Comparison with MEEP

We fist compare our method with the iterative
Yee-FDFD solver of the open source C++ pack-
age MEEP [2]. Our code is implemented by
combining EM-WaveHoltz with the Yee scheme
of the C library RBCpack [3]. Our code uses
GMRES without restart. The FDFD solver of
MEEP uses the BICG-Stab(l) method.

Following MEEP package’s benchmark ex-
ample for the FDFD code we consider a ring
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Figure 1: The real part of the Ez field (nor-
malized) for ω = ω0, 2.24ω0, 2.7ω0, Left part of
the figures is Yee-EM-WaveHoltz, and MEEP’s
FDFD solver is to the right.

resonator and the 2D TM model. The com-
putational domain is [−6, 6]2 with nonreflecting
boundary conditions, [3]. A ring resonator with
ϵr = 3.42 is located at {(x, y) : 1 ≤

√
x2 + y2 ≤

2}. The permittivity outside the ring is ϵ = 1,
and the permeability µ = 1 in the whole compu-
tational domain. Two point sources are placed
at (1.1, 0) with magnitude 1 and (−1.1, 0) with
magnitude −1. We consider ω = ω0, 2.24ω0 and

Table 1: Computational time (sec)
N ω = ω0 2.24ω0 2.7ω0

EM-WH
120 20 12 12
240 94 55 60
480 562 326 350

MEEP
120 11 21 34.14
240 109 180 229
480 1095 1531 2000

2.7ω0, with ω0 = 0.118 × 2π. The relative tol-
erance is 10−7. We use l = 10 in the MEEP
BICG-Stab-(l) FDFD solver. In the results dis-
played in Figure 1, we observe that the EM-
WaveHoltz and MEEP solutions agree well. Ta-
ble 1 presents the computational time needed
(N is the number of gridpoints in each dimen-
sion). The Yee-EM-WaveHoltz method is al-
most always faster and its advantage increases
as the solution is more accurate or when the fre-
quency is increased. We sweep ω ∈ [2ω0, 3.8ω0]
with step size 0.2. The number of grid points per
wavelength is fixed. We use l = 20 in the BICS-

Stab-(l) and a relative tolerance 10−5. The bot-
tom right figure of Figure 1 shows the scaling of
the two solvers.
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Figure 2: Unscaled (top) and scaled (bottom)
number of iterations as a function of frequency
for different filtering time. Left: 2D open prob-
lem. Right: 3D open problem.

2.2 Smaller Krylov Subspaces

As mentioned, we can filter over multiple peri-
ods. We consider T = Np

2π
ω with Np = 1, 3, 5

for 2D and 3D open domain problems (same
EM-WaveHoltz solver as above). We scan over
different frequencies and apply the GMRES ac-
celerated Yee-EM-WaveHoltz. The total num-
ber of iteration allowed is set as 200 in 2D and
100 in 3D. In Figure 2, we present the number
of iterations as a function of the frequency. We
also scale the number of iterations by Np and
present the result in the same Figure. Note that
for Np = 3 and Np = 5 the scaled curves visually
collapse, implying that the the total computa-
tional time is approximately the same but with
3 and 5 times smaller memory footprint.
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