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Accounting for viscothermal boundary losses in time-domain acoustics
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Abstract

It has recently been shown that viscothermal
boundary losses may be accurately and efficiently
captured by altering the boundary condition at
solid walls in standard frequency-domain simula-
tions of the acoustic pressure Helmholtz equation.
Here, we investigate the corresponding time-
domain boundary condition involving fractional
differintegral operators. We analyze an initial-
boundary-value problem with thermal boundary
losses and report numerical experiments.
Keywords: acoustics, viscothermal boundary
losses, Riemann–Liouville fractional integral

1 Introduction

Viscothermal boundary losses may have a sig-
nificant impact on sound propagation in narrow
geometries. In these situations sound propaga-
tion may be modeled by the linearized compress-
ible Navier–Stokes equations. Unfortunately, it
is computationally expensive to obtain numer-
ical solutions to the linearized Navier–Stokes
equations due to the high resolution needed to
resolve the thermal and viscous boundary layers.
Starting with the work of Cremer [2], simplified
models that are appropriate close to the walls of
the domain have been derived based on acoustic
boundary layer theory. A notable contribution
in this respect is the approximate boundary con-
dition derived by Pierce [6] for single-frequency
sound propagation. Recently, Berggren et al. [1]
proposed a computationally effective procedure
by rederiving and implementing Pierce’s bound-
ary condition to account for viscothermal bound-
ary losses in standard quiescent, linear frequency-
domain acoustics, that is, as a boundary condi-
tion for the pressure Helmholtz equation.

The frequency-domain boundary condition
(phase convention exp(iωt), ω > 0) may be ex-
pressed in the (complex) acoustic pressure p̂ and
velocity û, satisfying iωρ0û = −∇p̂, as

n · û = − cτV√
iωτV

∇Γ · ûΓ +
√
iωτT

p̂

ρ0c
, (1)

where n denotes the exterior unit normal,
√
i =

(1 + i)/
√

2, ∇Γ · ûΓ the tangential divergence, ρ0

the ambient mass density, c the speed of sound,
and τV and τT the viscous and thermal timescales

τV =
ν

c2
and τT =

(γ − 1)2κ

ρ0c2 cp
, (2)

where ν denotes the kinematic viscosity, κ the
thermal conductivity, γ the heat capacity ratio,
and cp the specific heat capacity at constant
pressure. The boundary condition may be inter-
preted as a generalized impedance boundary con-
dition, and the appearance of

√
iω is characteris-

tic of diffusion processes [5]. When appropriate,
boundary condition (1) is a small perturbation
to the regular wall condition n · û = 0; in air
τV ∼ 10−10 s and τT ∼ 10−11 s at atmospheric
conditions. Here, we investigate the correspond-
ing boundary condition in time domain.

There is a plethora of versatile time-domain
impedance boundary conditions for acoustic sim-
ulations; however, these typically require param-
eter tuning [5]. Moreover, specialized models,
such as the Webster–Lokshin equation [3], have
been developed for lossy sound propagation in
special geometries. However, the boundary con-
dition introduced here is applicable to general
geometries and requires no parameter tuning.

2 Viscothermal BC in time domain

It is possible to derive the time-domain analogue
of boundary condition (1) from the linearized
Navier–Stokes equations by repeating, in time
domain, the frequency-domain procedure out-
lined by Berggren et al. [1]. However, the same
expression may also be obtained using Fourier
transforms [7, expressions (7.1) and (7.4)],

n · u =− c∇Γ ·
(√
τV D

−1/2
−∞ t uΓ

)

+
√
τT D

1/2
−∞ t

p

ρ0c
, (3)

where D
−1/2

−∞ t and D
1/2

−∞ t = ∂t D
−1/2

−∞ t de-
note the causal Riemann–Liouville fractional in-
tegral and derivative of order 1/2 starting at
−∞. Typically, specialized discretizations of the
nonlocal differintegrals are required to achieve
sufficient computational efficiency [4].
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3 Energy balance including thermal losses

To derive an energy balance that accounts for
thermal boundary layer effects using boundary
condition (3), we consider an initial–boundary-
value problem for the acoustic pressure and scaled
velocity up = ρ0c u,

∂tp+∇ · (cup) = 0, Q = (0, T )× Ω, (4a)
∂tup + c∇p = 0, Q = (0, T )× Ω, (4b)
p = 0, up = 0, Q0 = {0} × Ω, (4c)

n · up−
√
τT D

1/2
0 t p = 0, Σw = (0, T )×Γw, (4d)

p− n · up − 2g = 0, Σio = (0, T )×Γio, (4e)

where T > 0 is an arbitrary end time, and g
is a finite duration source acting at the in/out-
boundary part Γio, which is complementary to
the solid wall Γw. We have assumed that p ≡ 0

for t ≤ 0, so that D
1/2

−∞ t p = D
1/2

0 t p in bound-
ary condition (4d). Assuming that p and up
are sufficiently regular, applying

∫
Ω p to equa-

tion (4a),
∫

Ω up· to equation (4b), summing, inte-
grating by parts either of the spatial derivatives,
rearranging the terms, and invoking the bound-
ary conditions, we obtain

1

2

d

dt

∫

Ω

(
p2 + |up|2

)
= −

∫

∂Ω

cp n · up

=

∫

Γio

cg2 −
∫

Γio

c(p− g)2 −
∫

Γw

cp
√
τT D

1/2
0 t p. (5)

Multiplying equation (5) by 1/(ρ0c
2), we find

that the rate of change of the acoustic energy is
determined by the net influx power, represented
by the first two terms in the right side, and
the exchange of energy in the thermal boundary
layer, represented by the last term. Integrat-
ing balance (5) in time, we obtain the energy
estimate

∫

Ω

(p2 + |up|2) ≤ 2

∫

Σio

cg2, (6)

provided that the term
∫

Σw
cp
√
τT D

1/2
0 t p ≥ 0,

that is, the term represents a thermal bound-
ary loss. Indeed, we may prove the required
positivity using a diffusive representation of the
half-derivative [3].

In case the viscous contribution to boundary
condition (3) is included, we have not succeeded
to derive an energy estimate. In fact, if viscous
effects are included, we may demonstrate that an

Γio Γio

Γwt = t1 > 0

d/2

L = 500 mm, d = 1 mmt = t2 > t1

Figure 1: Two snapshots of a wave packet trav-
eling from left to right in a straight duct with
thermal boundary losses. The duct has been sim-
ulated in planar symmetry; the upper boundary
is a solid wall and the lower a symmetry line.

infinite duct subject to boundary condition (3)
supports arbitrarily fast growing modes, which
indicates ill-posedness of the formulation.

4 Numerical experiments

Figure 1 displays two snapshots of a wave packet
traveling from left to right in a straight duct
with thermal boundary losses, which have been
obtained by a FDTD discretization of initial–
boundary-value problem (4). As suggested by,
for instance, Monteghetti et al. [4], we apply a
time-local discretization of the half-derivative
based on a diffusive representation, which sig-
nificantly reduces the computational cost com-
pared to naive discretizations of boundary condi-
tion (4d). Transmission characteristics have been
successfully verified against frequency-domain
simulations using boundary condition (1).
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